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1
Introduction.

When K is a compact topological space and E 1is a Banach
space a continuous linear map p : ¥ (K) —-> E has a "natural'
extension to the bounded Borel functions if and only if it is
weakly compact. There are other conditions eguivalent to this
(such as: p maps weakly compact sets into compact sets) which
continue to make sense, and to be equivalent, even when E is a
complete (not necessarily locally convex) topological vector space,
and when these conditions hold an integration process, whereby u
is extended to a class Jtl(u) containing the bounded Borel
functions, is possible which is entirely analogous to the one used
by N. Bourbaki [3] to establish Riesz' representation theorem and
related results. In the locally convex case weak compactness
criteria for the map u are, by duality, equivalent to weak
compactness criteria for families of scalar measures equipped with
an appropriate topology- A. Grothendieck has given several weak
compactness criteria (see {6]) applicable to maps from spaces
G (K) or families of measures, and we have been able to establish
the analogues of these in the case of arbitrary quasi complete
topological vector spaces. When E 1s weakly sequentially comp!~*
an arbitrary map o ¢ € (K) ~—~> E is weakly compact. A.Pelczynski
18] and C. Bessaga and Pelczynski [2] have shown that an arbitrary
map is from a space ¢ (K) to a Banach space E is weakly compac*
if and only if all sequences (xn) in E for which the finite

sums 2 AX are bounded when {3
L n'n
(weak sequential completeness implies this by Orlicz theorem). We

™

,nﬁ < 1l, are summable in E

have shown below that when E is an arbitrary quasi-complete t-7

logical vector space the same condition is still equivalent to the



extendibility of every u, for example to the fact that an arbitrary
u maps weakly compact subsets into compact subsets. This implies,
thanks to work of L. Schwartz [11] that an arbitrary map from ¥ (K)
to a space Lp, o < p <+ ® possesses the extension property. For
1<p<+ this was already known because these spaces are weakly
sequentially complete (even reflexive for p > 1 so that weak
compactness is trivial in those cases). The space 1L°(y) is the
space of V -measurable functions with the topology of convergence
in measure on sets of finite measure. Conceivably some of these
results could have applications to the theory of stochastic integrals.
Let us point out here a difference between locally convex
spaces and arbitrary topological vector spaces which has a consider-
able effect on this article: 1In a complete locally convex sSpace
it follows from the summability of a family (Xi)iéﬂj that for any
bounded family of scalars (}\ﬂixi)ie:__I is also summable. We owe to
S. Rolewicz and C. Ryll-Nardzewski [10] the observation that this is
no longer true for even an arbitrary complete metrisable space F.
At the same time these authors show that for a locally bounded, or
more generally a locally pseudo-convex Space, the equivalence still
holds. This accounts for the fact that in the present article
integrals J[gfdu are often considered, where g 1is a bounded
Borel function, rather than as usual integrals «[Afdu ., In many
cases where it is known that E is locally pseudo-convex it would
be sufficient to consider "indefinite' integrals of the type j;fdu ;
To facilitate the exposition we have termed B-summable those
families (x.) for which (kixi)r:j: is summable for all

i5e1 =
€ ¢£N1).

bounded scalar families (),
1

T
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Rather than maps p defined on a space € (k) we consider
maps i : K (T) —> E where T 1is a locally compact Hausdorff
space, and X (T) 1is the space of continuous functions with compact
support. The map g 1is termed a Radon map when for every compact
set K(_ T the restriction of p to the space &« (T, K) of
functions with support in K is continuous relatively to the topology
of uniform convergence.

In Bl we define the space gfl(u) of p=integrable functions
where . is a Radon map. This paragraph contains statements one can

make about arbitrary Radon maps.

The term Radon measure is reserved for those Radon maps for

which xfl(u) contains the bounded Borel functions with compact
support. These are introduced in 82 and basic convergence theorems
(2.8-12) are established for them. An integrability criterion (2=13)
linking integrability with discrete summability is proved here.

83 gives a number of conditions equivalent to weak compactness
in the locally convex casee It is shown that 7 is
a Radon measure if ifl(u) contains all functions ){K where K 1is

a compact G but an example is given of a Radon map w:G[0,1]—=E

8 y
with values in a Banach space, for which Jfl(u) contains all step
functions, hence the ruled functions, but which is not a Radon
measure.

In §l, 2, 3 only Radon maps with values in metrisable topo-
logical vector spaces have been considered. This restriction is
lifted in §h. Essentially no new problems occur since every topo-

logical vector space is a subspace of a product of metrisable spaces.

Theorem L-3 recapitulates some of the properties obtained thus far



L

in a manner which is valid for arbitrary guasi-complete t.v. spaces.
An entirely different construction of gfl(u), independent of any
choice of metric in E is given at the end of §4. In 85 the quasi-
complete spaces E with the property that every E-valued Radon map
is a Radon measure are characterised. 1In 86 ‘weak' integration is
used to obtain practical integrability criteria. It is assumed here
that the quasi-complete t.v,s. E is plunged into a t.v~s F, with
continuous linear injection ECS F, and p-integrability is compared

- J
1D'ﬁ— integrability, where pn = jop



81 Definition of gfl(p) and Jfo(u).

In what follows we assume that E 1is a complete metrisable
topological vector space (t.ves.) over G . Accordingly E has a
basis of neighborhoods of zero of the form {x : |x] <e}, € >0,

!

where the 'invariant metric' x —> |x| has the properties:

Ix+yi < Ixi+{y], Ixxi<ix] for |al <1, aE¢€, lim |ax} =0, and
A —>0
A C

ixl = 0 implies x = 0. (Without the last property this function
would be called an invariant pseudo-metric). Conversely given such
an invariant metric on a linear space E, it defines a topology
which is compatible with the vector space structure, i.e. for which
the maps (x,y) —> x+y and (n,x) —> 2 x are continuous. We
assume that on E such a metric is chosen once for all.

Let T be a locally compact Hausdorff space. We denote by
“, ¥ continuous complex functions with compact support, and the set
of these is denoted by X (T). The letter A stands for a subset
of T, K for a compact subset, JGA for the characteristic function
of A.

A Radon map p : X (T) —> E is a linear map with the follow-
ing continuity property: For every e > 0 and compact K there is
6 > 0 such that sup|¢ (t)| < & and support ¢ CK implies
w(p)lce. ST

l.1 Definition Given a function f : T —> [0, + o] we put:

W(f) =sup |p(P)l when f is lower semi-continuous (1.S.c.)
fl<s



p(f) = inf u(g) when f  has compact support,
r< e

g l.s.cC.

and for arbitrary f :

u(f) = sup w(h) where h has compact support.
h<f

The function f ——> u(f) will be called the semi-variation of
Ned

When A is a subset of T we put w(4) = MCXA); a set for which

Ww(A) = 0 will be termed p-negligible and the expression p-almost

everywhere (p- a.e.) will be used as in measure theory. The

coherence of the above definition will be proved in comnection with

the following theorem:

We use the notation ¢ of ©N. Bourbaki [3] and the term semi-
variation of R. G. Bartle, N. Dunford and J. Schwartz [1]. The
relation between the semi~variation of those authors and the above

W is discussed in [14] p. 132.



1.2 Theorem a) f < g implies u(f) < u(g); u(0) = 0. If (f.)
e - - YiEI

is an increasingly directed family of lower semi-continuous functions
with upper bound f,
w(f) = sup 1(f,)
iET
b) d(flﬁ—fz) < d(fl)-kd(fz) and more generally

w(z f < S u(f and H(UA < 3 u(A)
(2 1) < 3ilr) () < 3 4iCa,

for any sequence of functions fn or sets An .

]
]

c) w(f) 0 1is equivalent to f(t) Ou ase. and

f(t) = g(t) pease implies u(f) w(g).

I

d) If f 1is a bounded function with compact support, we have
p(f) < + oo and 1im u(>n D= 0.

N —>0
A >0

1.3 Lemma For any lower semi-continuous function f p(f) = sup u(%)
o<yL

where << f means % < f, support <& (C{t : £(t) >0} and

% (t) < £(t) whenever < (t) > O.

Proof. Let A< u(f). Then there exists W & X (T) such that
Wl < f »<lu() ] <u(f). Let w: {t ¢ £(t) > 0} and choose
e such that 0< e < [(V¥Y)] =2 . Assume iﬂﬁ} < {W¥l and
iH’—‘Yli < § implies iu(kpl) - (W) <e . Since ¥ tends to
zero at the boundary of (U it is possible to find Yq satisfying
the above conditions and such that Sug>qil Cw, and for a<1

sufficiently close to 1 the function a\yi satisfies the same
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conditions. Then & = ﬂaq)lﬂ << f and 2 < ﬂu(awl)ﬂsﬁ(?)gﬁ(f),
which proves the lemma.,

This lemma implies in particular that the above definition is
coherent.,

We now prove the theorem, the first assertion of which is
obvious. Let fiT f, let < p(f) and chose ¥ << f such that
X< W(Y¥). Then if K = suppp and W, = {ts £.(t) > D (1)},
Uu;i=LD DK, hence wiD K for some i, and consequently f, > ¢ .
Then » < u(g) < pi(fi) < @(f) proving a). Now to prove
pE(fl+ £5) < g.f(fl) + ﬁ(fz) when f, and f, are l.s.c it is
sufficient by a) to consider the casc where 15 £s EC X (T). Then
if e X (1) with %] < f, + £, there exist P1s Do E X (T
such that < =% +%, and [%.} <f, . Thus
()l < lu(p)l + Iu(py)l < H(fy) + 6(fy) and P being arbitrary
B(f{+ £5) < w(f)) + i(fy). More generally finite subadditivity
results and it now follows from a) that p:(erfn) < ag(fn) when
(fn) is a sequence of lower semi-continuous functions. For the
general case let K be a compact set and let gy be lower semi-
continuous with XKfnS g, and u’(gn) < ;l(fn) + 8/2n « Then if
g=2%g, and f=3f , XKfS g and

(XD S H(B) < Zile) ST RN ) + e ST + e
and since p(f) = sup gl()CKf) , and & > 0 is arbitrary the

=

inequality p(f) < Z @(fn) is proved. A fortiori
G(LA) < u(= ) < £ u(A ) whence b).
1, S 7( B = n

{t : £(t) >0} and A_={t : £(t) >3

n

i

c) Let A !}, n integer

and assume u(f) = 0. We have X , < nf whence
n



u,'(An) < g(nf) <nu(f) =0 (finite subadditivity). Hence

w(A) = ;.E(L)An) = O Conversely assume i(A) =0 and let

fo= inf(f,n). Then £, < n)CA whence u‘(fn) S;.f(n?(A) <np(A) =0

and finally Q(f) < W(Z f) <3
= HNa S

i
n n
h = inf(f,g) h(t) = £(t) a.e B(B) < A(£) < A(h) + w(f-h) = (n);

f ) =0 whence g(f) =0. If
similarly p{(h) = w(g).

d) Let w be an open set with compact closure and let & >0 be
given. There exists an integer n > 0 such that {9] < :?Li Xw
implies |u(<)j < € whence p.'(%?(.w) <e. Nowif 0<f < m')iw
for some integer m, W (f) < @(mn%‘l-%m) < mne < +oo, while

1. . -1 ,
0 <<~ dimplies () < ;J,(-ﬁ')(w) < & whence c).

1.3 Definition Let zl(u) be the set of functions f ¢ T ———>C

such that for every e > O there exists ¢ & X(T) for which
w(if -9 < e

l.4 Theorem a) f, g }fl(p) implies f + g & Ll(u) and
hf & ﬁl(u) for h Dbounded continuous, in particular Ll(p,) is
a linear space. Furthermore f(—:Ll(p,) implies Ref, 1Imf,

ifi & Ll(p.) and if f is real valued fFf, £~ Ea):.l(l.!.).

b) u(if+gl) < w(ifl) + W(lgl) and lim w(infl) =0 for

f, g (—:Ijl(u). cf]‘(u) is a topologj;gjlovector space with a
neighborhood basis of zero composed of the sets ({f: i(lf]) < e}

e > Qo

c) The set N(m) of complex functions f such that d(if}) = 0,

or equivalently f(t) =0 p.a.e, is a closed subspace of ,,Zfl(y,)
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and the quotient space Ll(u) = Jil(u)/N(M) is a complete metric
topological vector space.
d) The map p has a unique continuous extension f ———>_[fdu to
iil(u), with values in E and
w(if]) = sup | f@fduﬁ Vec L,
P12

in particulars

| [raul < w(ith)

Proof W(if+g - (P+¥)]) <u(lf-%D + d(lg-Yi).

If |nl <1 G(hf-hP]) <L(l£-9]). Thus f+g, he € Llu).
When |{h] < n, (n integer) i%lgl and hf=n%f Ef,l(u). The
inequalities JRef - Re @ ! < {£-%f, {ifl - 191 <|ft-< i,
§f+-%ﬂ'ﬂ < |£-P{ etc. prove the last part of a). The first
inequality in b) follows from Theorem 1.2 a) and b). For the
second relation let & > 0 be given and choose P& X with

G (1£-%]) < e/2 . Then for |l <8<1, wa]) <d(f-F)+ W(iagi) e
for § sufficiently small, by Theorem 1.2 d) thus the assertion in
b) follows.

c) N(u) 1is clearly a closed subspace, whence Ll(u) is separated
and metrisable. We need only prove that ji}(u) is complete and

t

for this it suffices to prove that every '"normally convergent'

series is convergent: Let = p (I1f 1) <+ and put f(t)=2 £ (t)
n f W n

when Sif (t)] < + @ and f(t) = 0 elsewhere. Let s_ =, . 3
n n 1::1 1

Then |f(t) - s (t)} < = |f.(t)] for all t, hence
i ~i>n %

Hif-s )< = g(1£:1) by 1.2%, whence 1lim w(|f-s |) =0 as
=i>n i n

was to be proved.
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d) Since {u()] <w(l¥9i) w is continuous for the topology
induced on X (T) by Jﬁl(u), consequently ¥ (T) being a dense
subspace by construction,a unique linear extension, denoted by

L o> j\fdu, exists, and the above inequality extends to

i]ﬁfdui < ¢(lf}), since the metric x —> ix] and the pseudo

metric f —> p({f}) are continuous on E respectively on uﬁl(u)
('3X3 - iyi' < ilx=-yl)s Thus if we put N(f) =3$gp J‘[q3fdp] we have
i< L

N(f) < w(if]) and since ﬂjﬁ?(fl+f2)duﬁfgluchiidﬁl +
; qup fodu] < N(fy) + N(fy) for |¥1 <1 it follows that

N(f, + f2) < N(fl) + N(f2) and consequently

ll
CIN(E)) - N(£) | < N(fy - fp) < W(ify ~fyl),whence N is continuous
on aﬁl(u), Tt is sufficient therefore to prove N(f) = w(if]) for
f & X(T). But this results immediately from the definition and the
following fact: every Y & X(T) with W] < 1f] can be
approximated uniformly by functions of the form ¢ f where 1 Pi<1,
CPE:}((T) and supp9 is contained in some compact neighborhood of

supp f » This proves the theorem.

Remark The topological vector space Jfl(u) does not depend on
the choice of metric on E. Indeed for two such metrics |}, and
]lz and the corresponding semi-variations ﬁi and JZ it is
easily checked that if |X|l < & implies lxlz < &, ui(f) <&
implies Ué(f) <€

Observe further that if f is some complex function such
that for every € > O there exists.ggz,f?(u) with d(lf-gl) <&,

f also belongs to 4£l(u), (by virtue of the triangle inequality) .
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In particular if {(Jf-g]) =0, i.e. if f(t) = g(t) ma.e, *
belongs to ¢Zil(u), and since Sj}ﬂu-ifédul S;I(ﬂf-gi) = 0,

j}du =Jrgdu. This leads to the introduction of the usual definition:

l.5 Definition Any function f with values in € or R will

be called up-integrable if it coincides w.a.e with a function g

belonging to iﬂl(u). We put ~[fdp —V[go by definition.

Observe also that if (in) is a sequence such that
n>1
lim E(ﬁfni) = 0, there exists a subsequence (f ) such that
& Dig 11

limf (t) = 0 pe.2.e. Indeed if z p:(gfnﬁ) < + o it follows that

limf_(t) = 0 p.a.e for w(llm]f D<u( =) < = W(ifba)
‘ p=>n p>n :

for all n, hence J(Izaﬁfnﬂ) = 0 and consequently lim|f, (£)]=0 teaoc.
For the next theorem we need the following results of some

independent interest:

1.6 Proposition Let f 3 T ——> [0, + 0] be p-integrable

a) TFor every e > 0 there exists K compact such that
IJ?.(X[:K ) < Ea
b) For every € > 0 there exists § such that u(4) < &

implies uX)CAf) < e .

Proof. There is ¢ & X (T) such that u(if-9{) < €/2 , whence
u<7<Af> <HE=l) + WX, 1@l <e/2 + B0, 1% 1), Then for

= Cﬁ with K = supp ¢ uQZ{%f) < €/p<e, and if Y} <n
;I(?(Af) < &/p + n W(A) < e provided w(A) <& =¢/2p .
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1.7 Proposition a) When W is open (w) = sup W(K), K compact.
K

b) When A has a compact closure pg(A) = inf\ﬁ(uj) where W is open.
A6

c) For arbitrary A, w(A) = sup L(A N K).
K

Proof Let < u(w). Then by lemma 1.3 there exists < <,

with supp @ = K (Cw and A< y(9), since 0<&§ §7CK A < gi(K)
proving a). Let A Dbe as given , then by definition of u(4)

there exists f lower semi-continuous such that ’X‘A < f and

K(f) < Jd(A) + e . If W is a relatively compact neighborhood of

A we may (upon replacement of f by inf(f,7(a))) assume f S’X-u)‘
Then by Theorem 1.2 b and d w(x»f) depends continuously on . ,
whence p(af) < W(A) + & for some > 1. Let w= {t: af(t) > 1}.
Then ) 1is open, W DA, and ’st Af, whence (W) <g(A) + e,
and € being arbitrary this proves b). Property c) results
directly from the definition since W (f) = sup u(}in) for all

f>0 (if h < f has compact support K, hKSf}in < f); this

ends the proof,

In particular one may at this stage define the support of pu

to be the complement of the largest p-negligible open set.,

1.8 Definition A function f : T ~—> ¢ (or IR or some topo-

logical space) is said to possess the Lusin property when for every

compact K and € > 0 there exists K' (K with E(K—Kq) < e
such that the restriction f/Kv of f to K is continuous, We
denote by JZ %) the set of complex functions possessing the
Lusin property.

Clearly if f belongs to L °(n) so does ||, Ref, Imf, ™ .
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If f and g belong to A °(u) we can find X' K with

H(K-K') <&/2 then K CK with w(k'-K") < &/5, such that

f/K' and g/ are continuous. A fortioris (f+g)/K" and fg/Kn

are continuous whence f + g and fg & Z:O(p,)o Every continuous
function belongs to Z.°(u). Furthermore if f possesses the Lusin
property and g(t) = f(t) p.a.e so does g. For let

A=1{t : f(t) #g(t)], let K be a given compact, K' (CK with
u'(‘K-KY) < €/~ such that f/K? is continuous and let «w be an open
set containing A N K' such that u(w) < &/ then if K“ =K'N [:(Q

K(K-K")< & and g/ 18 continuous.
= /X

1.9 Theorem Every u — integrable function possesses the Lusin
property, in particular Ll(u) Cio(u), Conversely if

£ & LP(n) and ﬂf(t)ﬂg g(t) -a.e. where g & jjl(u.) it follows
that f & J,Ll(u), In particular if g & aZjo(u) is bounded and
£E€ Lrw), e € L.

Proof Let fC—:eﬁl(u) and let WHE){(T) with
,u,'(Ef—-\g)nﬁ) < l/2n+2 for n > 1. Then L}Jn(t) tends to f(t) u .a.e
and we may assume f(t) = lim y n(t) wherever the limit exists.

n

P Gt = W\mF Wooyl » @y = 0. Then f(t) =3 C\Dn(t)’ wherever
n>1

ey

. » 1 o= :
the series converges and p,(JCfni) < = Let h(t)= nZzlni F () <+oo,
and let 0, = {t : h(t) > al, so that 0, is open since h is

lower semi-continuous. Assume a > 1. Then since

X Slh< > -r-l-ICFnﬂwehave

0y a "—nzla
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00 N o0
. ol . o1 1 + n
(0 < 2Zn = 1) < 2 n = ;) + > — < £
(0,) : NCISID o vl e ) bl R

provided N 1is first chosen so that the second part is smaller

than €/, and a is subsequently chosen large enough for the

first part to be smaller than €/2 . Thus 1lim u(0,) = 0. Now for
a —=>+o00

t Ean,nkinacek(t)ﬂ Skinkﬂcpk(t)ﬂ < h(t) < a so that

1P (£)1 and a fortiari E @ (t) = f(t) converges uniformly on

[o,

fortiori f & J°(u). TFor the proof of the converse we may assume

whence the restriction of f to EOa is continuous, and a

0< f<g, and we first consider the particular case where f 1is
bounded and has compact support, whence 0O < <@ for some

P & X (T). Let X =suppy and let K' CK with d(k-K') < & .
(where n is an integer such that < < n), and such that f/x
continuous. Let f be a nonnegative continuous extension of f/KY

to T (apply Urysohn's theorem in the one point compactification of T)
and let ¥ = inf(9,T). Then y € X(T), W (t) = £(t) for t &K',
and 0 < Y < %, whence p(jf-vi]) <o (X felf -9 +

SO =4 1) + 0O 2= < B gl £=¥1) < W)Xy _gr 2n)

< 2n Q(K—K') < e, {f-%| being zero on r,K and K' , which proves
that £ E:cf;(u). Next consider the general case where 0<f < g.

Let f_ = inf(f,n) and Aq={t : £(t) > n}. Then =n 7<A < f<g
i = n e -

whence p(A ) < uKl;g) anc consequently 1lim (A ) = 0. Now
n’ = "\n 7 =57 n

u'(f—fn) = u( yAn(f- £)) < u'(?(Ang) so that nl_i)moou'(f-fn) =0 by
proposition 1.6. Thus it suffices to prove that fn belongs to
Ig(u) and we may and shall assume that the given function f 1is
bounded. Let K be a compact such that M(X[ﬁ 2g) < ¢ (prop. 1.6)
and let P& k;(T) be chosen such that f(t) < @(t) for t & K.
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Then h = inf( %,f) belongs to lil(u) according to the previously
considered case, and h(t) = f(t) for t EK, whence u(jf=hj)=
ﬁ(%{kaf—hl)g d(ZEK(Zg) < ¢, proving that f EZGK;(M) as asserted.

Next we prove two convergence theorems:

1.10 Theorem Let (fi)iE:I be an increasingly directed family of
lower semi-continuous functions with upper bound f; and values in
[0, + 0] Then pu(f) = sup {(f,) and if f is u-integrable
iggId(f—fi) =0. In pa;iggilar if furthermore f. E:Jcl(uI,J[fidp

tends to Jﬂfdu.

Proof The first assertion was already proved in connection with
Theorem 1.2, Let f > 0 be p-integrable. Choose K compact

such that ﬁ(]\EKf) < € and such that f/p is finite continuous,
which is possible by prop. 1l.6. Then if 0<a < 1

w(f - a’)(Kf) < ﬁ(f—XKf) + ﬂ((l—a)XKf) < e for a sufficiently
near 1, by Theorem 1.2 d. Let Ai=={t C K:af(t) < fi(t)}° Then A,
is open in K, and A; T K. Thus there exists i such that A;=K
and consequently a;KKf < fi , whence p(f- fi) < €, which proves

the second part. Finally if f, E:lzl(u),
Hffdu —ff_dui < gj(fmfi) < e for
5 = hS

fi sufficiently large. This ends the proof.

1.11 Theorem Let (fi) be a net composed of p-integrable
T 1T
functions, and let f be some function, Then 1lim W(ﬂfi— fi) =0
1

if and énly if the following three conditions are fulfilled:
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i) For every compact K and ¢ > O,
lim p{t €K : ifi(t) - f(t)} > el =0
i

ii) For every € > O there is some compact K such that
u'(?([:Kﬂfiﬂ) < & for all i.
iii) For every & > 0 and compact K there is § > 0 such that

ACK and u(A) < 6 implies ﬁ(){AEfii) < e for all i.

Proof The conditions are necessary: let Ai:{t: ifi(t)- £(t)] > ¢}
and n be an integer such that ¢ . Then lf% < |f. - fi,
n < n/ Ay S 1E
and consequently J(Ai) < d(nifi - f]) <n ﬁ(ﬂfi - f|) whence
lim J(Aﬂ'= 0, a fortiori 1lim d(Ai/W K) = 0. Conditions 1ii) and
' i

i
iii) follow from proposition 1.6 and the inequality

WL 1) ey = £ + (02D,

Naturally we describe condition i) by saying that fi tends to
f 'in measure' on every compact set. To prove the converse
it suffices; as in the traditional proof for the LP spaces (l),
to prove that fi is a Cauchy net, since then by Theorem l..4 c

fi converges in Ji;(u) to some g, and by the first part of this

(1) The case of ILP space 1s indeed a particular case of this since

Jip(i)) = lzl(u) where p : X —> LP is the natural inclusion.
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proof it follows that fi tends to g 'in measure  on every

compact K, whence it follows easily that g(t) =f(t) u-a.e and
consequently that f. tends to f in Jil(u). Now given & > 0
we prove that ﬁ(ﬁfi-fjé) < Le for i, j sufficiently large.

First choose K compact such that d(};EKifii) < £€/5, and let

Aij = {t EK : Hfi(t) - fj(t)i > s'} where d(s’ﬂfK) <€ .

Then
K(leg - £51) < J(X[K R S LANLY SV

Sg'*8+l“XA,iff‘%i)S45
1

J
provided J(Aij) < § (associated with e by hypothesis 1iii),
which is the case for i and j sufficiently large since

w(ag) <iale €K - £l 280 v wlt €K s Hfy - £l > %/2) which
tends to zero as 1 and J increase indefinitely.

The preceding properties are of course quite general and
nothing for instance guarantees that Jil(u) or ;io(u) contains
anything but continuous functions. If : C(K) —> €(K) is the
identity map lil(u) = L%u) = € (K), theorem 1.10 is the
classical Dini lemma, and 1l.11 is empty. If T is locally compact
non compact and p : ¥ (T) C;,}ﬁO(T) is the natural injection into
the space of continuous functions tending to zero at infinity
I}(u) = %O(T), £°(r) is the space of all continuous functions,
convergence 'in measure on everycompact' is uniform convergence on

compact sets.

Remark

If for C{(E:B(+(T) we put P(Y) = g(%) the functional
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p : X, —> [R_ satisfies the following properties

a) o < W implies p(P=p(¥y)
b)  p(9+Y¥Y) < p(9) + p(¥)

c) lim p(0. %) = O-
A=>0

By Theorem 1.2 p determines i completely. Conversely let p be
a function with values in (b; + o) satisfying a) b) c¢). Then
there exists a complete metric t.v.s. E and a Radon map
b : X(T) —> E such that p(P) = g(4¥) for all ¥> 0. Indeed
if we put p(9P) =p(1Q]) for ¢ EX(T) G —> p(YP) is an
invariant pseudo-metric on K(T) and if E is the completion of
the associated Hausdorff space it is easily checked that the
canonical map p ¢ X (T) —> E 1is a Radon map, and that
w(<) =p(f) for all YE&K_ .

In the next paragraph we confine our attention to Radon maps
for which ,Iil(u) contains at least the bounded Borel functions
with compact support, and later we characterise the spaces E such

that every E~valued Radon map has this property.



20

§2 Radon measures

We continue to consider the case where E 1is a complete

metric tT.V.Se

2.1 Theorem The following conditions are equivalent:
a) jzl(u) contains all bounded Borel functions with compact
support.
b) 7<K “ jjl(u) for every compact K.
¢) Every complex Borel function belongs to ;ﬂo(u), i.e

possesses the Lusin property.

2.2. Definition A Radon measure is a map W possessing the above

properties,

Proof c¢) implies a) by theorem 1.9 and a) obviously implies

b). To see that a) implies <¢) it suffices to consider a real
valued Borel function f with compact support and to prove that it
belongs to .[%(p) (for if o £ & L°%w) for all < & X (1),
obviously f & L°(k). Let h : R —> [0,1] be a homeomorphism.
Then h o f 1is a Borel function which belongs to iﬁl(u) by
hypothesis a), and consequently belongs to L %) (Theorem 1.9).

Thus f = h~t

o h of also possesses the Lusin property. It
thus only remains to prove that b) dimplies <¢). This will be a
consequence of the next theorem in the proof of which we will

assume only hypothesis Db):
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2.3 Theorem Let p be a Radon measure. Let‘B ' be the set of
all subsets A of T such that ?tAr1K E:;ﬁl(u) for all compact K.
Then ;B M is a o - algebra containing the Borel sets and the follow-

ing conditions on f ¢t T —> € (or fR) are equivalent:

i) f—l(B) & B"* for every Borel set B (¢ (resp R).

ii) For every compact K and every & > 0 there exists K' CK
with d(K-—K') < & such that f/Kr is continuous (i.e. f
possesses the Lusin property).

iii) TFor every compact K there exists a partition K==N-+§ Kn
where N 1is p-negligible and where Kn is compact such that

f/Kn is continuous.

2.4 Definition When p 1is a Radon measure the sets A.E::B“

will be called p-measurable sets and the numerical functions satisfy-

ing i) 1ii) or iii) will be called p-measurable functions.

K
Proof., By hypothesis b) in Theorem 2.1, 13 contains the closed
sets, thus all Borel sets if we prove that it is a c-algebra, and
once we prove that i) implies ii) it will follow that b)
. . . . = E ’x —
implies c¢). Now since X, npnx inf(, Af\K,KVCB(\K)

7‘/AmK + XgnrK ~ i?(AﬁK _XBﬁKi and 7(KmCA =7<‘K -’XA(\K ‘
2

E;u is an algebra. To prove that it is a o - algebra we need the

following lemmas.

Lemma 1 Let f Dbe a numerical function which possesses the Lusin

property and let F be a closed subset of C (resp 'ﬁ). Then
-1
THER) gt .
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Proof Let K be compact, € > 0, K' (K a compact such that
f/x? 1is continuous and L(k-K" < e. Let A= f—l(F). Then
Ank' = [t @K' : £(t) €F} 1is closed in k' hence compact and

1 = e :
ANKX - ANK' CK - K whence “(%AHK—%AnKi)SS , which
proves that ’XA K « Ll(p,) and consequently A & B”‘ i

Lemma 2 Let An be a sequence of subsets belonging to B“‘ such

- _ 1 7[
that AnCK for some compact K. Let f(t) —n_>2_l§-n An(t) g

Then f & ,,Zil(u) .

- A > 1
Proof Let f_ = 3 — }4A , then f & Z, (n) and
— noi=1 21 i o

i 1 / . . L
|f - fn* < n LK so that |J.(if—fni) < u(z—n- )LK) whence

lim @(l£-1 1) =0, and & L.

n
We now prove that R" isa o - algebra. Let An E:B“ and
put A = nk>il A - It suffices to prove that ANK = kI{ (A NK)

belongs to R’ Y , thus we may assume A (C_K for all n. Let

f(t) = = L VA (t). Then since f(—:ﬁl(u) f possesses the
n

n>1 2"
Lusin property and by Lemma 1 [A ={t: £(t) @O} belongs to R ",
whence A E\B Al =

Lemma 1 now shows that every function which possesses the
Lusin property is B M _measurable i.e. satisfies condition i)
Conversely assume f is:P; M measurable (which is the case if f
is a Borel function) and let us show that f possesses the Lusin
property. Without restricting the generality we may assume that f
is real valued, and by composing with a homeomorphism h s TR ——> [0,1]

we may assume O < f < 1. Finally since it suffices to show that

Yfc L2(n) for all ¢ € X (T) and since ¥f 1is also
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——

DY - measurable ( ¥ being a Borel function), we may assume that £
has compact support, whence 0 < T S')CK . Then there exists a

sequence (fn) of B ' _ measurable simple functions with
1

h‘ 5

" . w1 .
0< £, S)(K such that |f - fnl < and since f L (w)

tends to zero it follows that f QLl(u)

and W(1£ - £.1) < HE Ky
and a fortiori f Ef(,’.t). This proves the equivalence Dbetween 1)
and ii) and also terminates the proof of thecorem 2.1. It remains
to show that 1ii) dis equivalent to the other conditions. However
this will follow more easily after the next proposition and lemma

will have been established.

2.5 Proposition Let A Dbe a p-integrable set, i.e. a set for

which 'X A (——:ﬁl(u). Then for every & > O there exists a compact

K (A such that p(4-K) < €.

Proof By 1.6 there exists a compact set H with pJ(A f\{H) < 5/2' .
Let H' (CH be chosen such that ’XA/HT is continuous and
S(H-H") < €/5 . Then X = ANE' = It €d' :;}L/A(t) > 1} is compact

I .
and ANH - ANH CH-H whence E(4-K) < e .

2.6 Lemma Let An’ AEB“ .
o1 :
a) If AL DA 1 - ,,%AlEﬂL, (p) and A =QAn is
u-negligible, 1lim p(A_) = O,
ne>oe P 1
b) If AnCAn+l .o (A with /XA & A(u), and A —-LrJl A is

u-negligible 1lim _LI(A-—An) = 0.
n

Proof b) is obviously a consequence of a which we prove.

: _ —
Replacing A by A - A we may assume NA = g « Let K CAj



n
with w(A - X)) < €/n » andlet Hy = irz\l K, . Then
n }1 = n
= = m - ( ‘1 _ T > _
An Hn i=lAi bl Ki C:é;{(Ai &i) whence M(An Hn) <€ .

But (g H = ¢, thus there exists n such that H, = ¢ and

consequently Q(An) < & , which ends the proof.

Let us now prove the equivalence of conditions ii) and iii)

in Theorem 2.3. Clearly iii) dimplies ii) by the above lemma
n
and the fact that if Hrl = 2

. K, f/ﬁn is continuous. If ii) is

il

assumec and a p-integrable set A 1is given we cans using proposition
2.5 inductively define a sequence of disjoint compact subsets

(Kn) contained in A such that f/k is continuous and
n n

. 1 g
u(A—Hn) < where H/ —iil Ky (to construct K, .1 take
7 . e ! l o !
K CA -~ H, with u(A-—Hn-ﬁ ) < 2To]) anc then K 4 (_K such
that f is continuous and (XK' - X )< 41— whence
/Kn+l ( n+l " o(nsl)

. 1 . ~ . 1
n(A Hr1+l) 5;5;1. Then if N = A - E K, () S-E for all n
and uw(N) = 0, proving a somewhat stronger condition:

2.7) 1v) TFor any p-integrable set A there exists a partition
A =N+ 3 K, such that N is pu-negligible and K, 1is a compact
n

with f/¢  continuous.
n

In particular if 1 Gchl(u) we have such a decomposition

for the whole space T.
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2.8 Theorem Let uw be a Radon measure. Let fn be a sequence

of p-measurable functions converging p.a.e. to f. Let A De
a u—-integrable set (i.e. ){A & ji,l(u)). Then for every &> O
there exists a compact K (A with g(A~ K) < e such that
fn(t) ——> f(t) uniformly on K and such that the restriction
of each fn to K 1is continuous, in particular f 1is

u-measurable (1).

Proof Using the Lusin property and proposition 2.5 we can
. N . ' R el
inductively define a seqguence (Kn)n - with Kn+1_C:Kn.C:Ao C A

such that fn/K is continuous and such that Q(A-—Ko) < €/),
“n

NE: T Il
and w(XK - K ;) < po 8/4.

This statement is valid for fn and I with values in an
arbitrary metric space provided p-measurable is taken to be

synonymous with the Lusin property.



R6

Let XK' = OX_ . Then g(A- K') < &/, and f /! 1is continuous.

Let K _ = {t €K' s adist(f (t), £ (t))<x, ¥ g, r > n}. Then
n,p q T o4 i -

17 . . 1 ? 3 .

K, p 1is compact, Kn,p‘-—Kn+l,p< K anc since fn converges a.e

on X',U K, , 1Is almost all of X' . Thus by Lemma 2.6
n

9
lim (K" - Kn 0) = 0 and we can choose an increasing sequence
n = oo 2

.o €/, L .
ooy such that Ww(K - T{np,p) < &/,p+l. Let K _rp\ —

then XK' = k" C U k' - x whence ,uf'(Kr - Kh) < 8/? and
pzl np b2 p - =
17

w(A-X") <e. But for tECK" dist(£(t), f 1

r(t)) < 5 for

it
Q, T > np, so that fn converges uniformly to f on X . 1In
particular f/Kn is continuous, Then if p 1is a Radon measure we

may take for A any compact set consequently f 1is u-—measurable.

2.9 Corollary Under the same hypothesis fn tends to f 'in
measure' on every compact set, i.e.

n];igéu'[t K £ (6) - £(8)] >e} =0.

Proof Let A = {tCX: |f t) = f(t)l > e}l and let & >0 be

A
given. Choose k' CK with W(K-K") < § such that f, converges
to f uniformly on ' , Wwhence ﬂfn(t) - f(t)i< e for n>N(e).

‘ »
Then A CX- K , and u(A) <& for n > N(e).

2.10 Theorem Let & be a Radon measure. Let (f ) be a
et N°n >1

sequence of p-integrable functions converging uw almost everywhere

to f. Then f is p-integrable and 1im pX!iﬁ-f‘l)= 0 if anad
n-=- oo n

only if the following two conditions are satisfied:

aj For every € > 0O there exists K compact such that

g;()(D if )< e for all n,
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b) For every ¢ > 0 and every compact K there is § >0 such
that A CK ((A) <& implies g(y.Aifq]) < e for all n.

This follows immediately from Theorem 1.11 and the above corollary.

2.11 Corollary (Dominatec convergence theorem). Let (f ) be

J

a sequence of p-integrable functions converging to f p.a.e and

assume there exists g E:jil(u) such that ]fn(tﬁ < 8(t) uw.a.e.

Then f is p-integrable and 1lim d(ﬂfn - f}) = 0. 1In particular
n —oo
L[ fdu = lim f an
Ne=>c0 - n
Hereafter we shall sszy that a family ( Xi)'r— is B-summable when

1=T

for any bounded family of scalars ()j'xi)'C: is summable. For
1T

sequences (x_ ) this 1is equivalent to the fact that the series

oo n n(_:N oo (1)

nzl X, X, converges for every (xn) c{.

2.12 Corollary Let f Dbe p-integrable. Then for any sequence

(A) of disjoint wm-measurable sets with union A, the sequence
N'n>1
( fdu) is B-summable and { fdu =3/ fdu . (Here fdu
jkn ngl jA rlen JA
stands as usual forijAfdu).
1
()Recall that in a quasi-complete t.v.s & a family (xi) is

summable with sum S if for every neighborhood of zero]V' there
exists a finite set K, such that K::)KO implies SK - S & V, where

Sg = .2 X . . This is equivalent to the Cauchy condition: for every
iEXK =
V. there is K, such that KNK_ = g implies Sy € V. In particular

any subfamily (Jci)_cz 5 of a summable family is summable, and
l..
<ijj_G?I is summable iff every countable subfamily is summable. A

summable sequence is not necessarily B-summable, unless [ 1is locally
pseudo conveX. See S. Rolewicz and C. Ryll-Nardzewski, Coll. Math.
XVII '67.
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2.13 Theorem Let p : lf(Tﬁ) ——> E be a Radon measure.

Then a function f ¢ T —=> € is p-integrable if and only if a)
f 1is u-measurable and b) For every sequence (X ) of disjoint
n>1

compact sets such that f/'Kn is continuous, the sequence

r , : _ (1)
( fdp) o is B-summable .

K =

n

Proof a) and b) are obviously necessary conditions. For the
converse observe first that a) and b) dimply that for any

sequence (K,) of pairwise disjoint
n>1

(1) If E 1is locally pseudo-convex, in particular if E 1is
locally convex or if for some p with 0 < p <1 jxx| = 1P lx)
for all x & EN&C , B summable is equivalent to summable.

In that case b) can be replaced by the weaker condition b'):
For any such sequence (K) lém J% fdp = 0. For applying b')
to & sequence H_ =

b3
o iEP,
sets of N, it is seen that the Cauchy condition is satisfied.

K. , with Pn pairwise disjoint sub-
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compact sets such that 7CK iy G:jil(u), the sequence (~[K fan) is
n A i
B-summable. For K acdmits a partition X_ = N_ + = it
n n n i n
N, is wu-negligible and f/Ki is continuous. Then the family
n

such that

( . f du) . 1s B-summable and a fortiori the family ( fdu
K n,< Ky
n

since jﬂ fdp = 2 i fdu. Next we prove the following lemma .
K i Jx? ‘

I
n

Lemma  Tor any sequence of disjoint compact sets (Kn) such that
n

Y £ELI 1 ik 11D = o.

n
Proof Assume on the contrary that gj(7fK [f]) >a >0 for
“n
infinitely many, or for simplicity, all n. Then by 1l.4d there

exist Borel functions such that f{eg. | <X and
&n &n nf_Kn

ﬁjrgn fanl > a, and by approximating &y by simple functions and
using the regularity properties of 1, we can attain that

iy . =l . P I
By = z a }‘K; where (l{n)i is a finite family of disjoint

l . -
compact subsets of X_, and Jali< ], Thus | aljnifduﬂ > o .
n n' -— i n Kn

But by the previous observation the family (!%i fdu)i , is
n
B-summable which contradicts the above inequality. This proves
the lemma. We now proceed with the proof of the theorem} proving
first that ;( K:fEijl(u) for all compact sets K. Let
K=N+ 3 Ki where N is uw-negligible and f/K is continuous.
0

Let Pn be a sequence of finite disjoint subsets of ' RN anc let

H, = 2 K; . Then by the lemma lim Q(X H 1f]) =
i P n n

lim g( > 7K'K If]) = 0. Thus by the Cauchy condition the secuence
n i+=P i
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(IfK i) is summable in —le(u) and since its sum is X_Klfﬁ
a.e, it follows that X,anj f‘]i (), hence that‘X f(—all(p
since f 1is assumed to be u-measurable. Finally we prove that
iEf w(lf - )leJ) = 0, where K is compact. Assume on the cont;i??;L
d(]f —'%Kfl) >0 >0 for all compact X. Then we can inductively,a

sequence (K ) of disjoint compact sets such that d(% I£]) >a
K
n>] i
which is contradictory to the above lemma. Tor K = ¢ we have
w(]fy) > a. Assume KyseosK 1 constructed. Let & be a relatively
n-i
compact open neighborhood of \Hj L Then
(i f —'Xojfi) > p(if - XZB £1) > a and there exists a compact set
K such that W(f lf - X, fl) >a. Then K =X N(w satisfies

the requirement, Thus the theorem 1is proved.

Corollary Let T =1 be discrete, let u = X (I) —> E be a

Radon measure, and let x. = u({i}), whence u(9) = ¢ (
B 1 1f—I
for @& ) (T). Then f & L) iff (£(1) %) is
' i 1T
B-summable, and in that case
fg;fdp, =z g(i)f(i) x5 where g c E(TD).
i
Proof By 1.6, if f = lil(u) f = 1lim 'Yle in Iil . Hence
K '
deu llm jﬁ fop = 1lim = f£(i)=x ;o Replacing f by gf it
K iCX

follows that £ is B-summable. The sufficiency results from the

above theorem.

Remark In the above theorem the class of compact sets K such that ﬂﬁ
is continuous may be replaced by an smaller directed class K; provided
we still have the following: for every compact set K and every

'
e >0 there is XK & § K' (X, such that uY(K - k") < e, oOr
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equivalently XK = N + 2 Kn Kn - 5?. The proof is the same as before.
n

As an application of this let us prove the following:

2.14 Theorem Let (fn) be a seaquence of u-integrable functions

converging p.a.e to a function f; and assume 1im /‘gfndu
n == o0~

exists for every bounded Borel function. Then f 1is wu-integrable

and  1im fgfndp, = fgfdgw..

n—>oo0 *

pl =]
Proof We apply the above criterion with for (s the class of compact
m
sets X such that fn/K is continuous for all ¥, and converges
L

uniformly to f/x . Let (,kp)p be a bounded sequence A a subset

'l f f du , where (Kp) is a

of N, and put un(A) = o)k

>
pE A
sequence of disjoint compacts belonging to 69. By hypothesis

u(A) = lim un(A) exists for every A. It follows that u is

= (1)

also a countably additive set function anc since  Jy £

tends to fdu it follows that the sequence (xp ]% fdu)p is
P P

summable, whence f E:;fl(u). Now the maps g -—~>_féfndu are

K

equi-continuous on the bounded Borel functions with the uniform norm,
by the Banach Steinhauss theorem, and for g equal to a finite sum

Za X with K, €& Lim fgfnd_u = [gfdr . Tt follows from the
densitylof these simple functions that the same relation holds for

all g.

Remark When E 1is locally pseudo-convex it should be sufficient to

assume lim ]; f du exists for all Borel sets. (In the locally convex
n —>co n

case it suffices to have it with all open sets A).

(l)See Dunford and Schwartz [4] III 7.1. The proof of this theorem can
be applied without modification, taking V¥ the measure of mass 1/2n
at the point n & N.



32

Finally we prove some facts which will only be used in

connection with the Fatou property in §5.

2.15 Theorem a) Let A Dbe a p-measurable set contained in a
countable union of open p-integrable sets. Then for every ¢ >0
there exists an open set w H)A such that w(w -A) < €

k) Let f : T —> [0, + o] be a w-measurable function, zero
in the complement of a countable union of open w-=integrable sets,
Then for every e > O there exists a lower semi-continuous function
g > £ such that u(g-f) < e (here g(t) - £(t) 1is taken to be O

when both g(t) and f(t) are equal to +).

Proof. a) Assume first A‘COJ’XO < Il(!.t). Then by 2.5 there
exists a compact set K (CO - A with 11(0-A-K) < e. Consequently
W=0-XDA and p(w-L) < e . In the general case A =\ﬁ} A
where An satisfies the previous condition, and if (‘onDAn with
gf(wn - An) < 8/2n w =%wnDA and uw(w-4) < e . b) Assume
first that f < njlo where n 1s some nurflber and 7(0 - ,le .

Then there exists a simple function h = Zf a. ,XA. with
f<h<n _7(0 , h = £ < 6/7(’0 and consequzr_l_{:'}ly :.Jf(h-l—f) < &/z for 5
sufficiently small. Now by a) one can replace h by

Ik
g = =z a. X with open wiDAi , such that ,u,'(g—h) < 8/7 5

i 17 eir
whence 1(g-f) < & . 1In the general case f may be written
f(t) = = fn(t) where f_ satisfies the »revious condition and if
n
- ] led Wit (o — €
= > fn gn f,s.c and bounded with gJ,(g_ﬂ fn) = /21'1 we have

g(t) - £(t) < = g (t) = £ (t) (equality except possibly if
~“n>1 ¢ .

g(t) and f(t)” are both infinite) whence u(g-f) < e.
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2.16 Theorem Let (fn)rl>l be a seaquence of p-measurable
functions with values in [0, + =], such that f, < £, end

f = sprh . Then u(7) = Sup u(fn).

Proof Assume first that f vanishes in the complement of a compact
set. By 2.15 there exists g > f, lower semi-continuous such that
H(g-f) < e . Let < p(f) and take € > 0 such that 2+ e <y (f).
Thus A + £ < p(g) and there exists (?E:}(+ such that 0 <P < g
and X + e < (). Let h = inf(Y,f). Then

Y+ f=h+su(F§,f) <h+ g, whence - h<g-1f (if f(t) =+
h(t) = 9 (t)) consequently g(P-h) < e and A+e < u(y) <u(h) + ¢
whence A < p(h). Now put h, = inf(h,fn). Then h < h ; and

h = sgp}Hl . By the dominated convergence theorem ﬁ(h—hn) tends
to gero, a fortiori M(hn) tends to u(h) whence

a < J(hn) < ﬂ(fn) < W(f) for n sufficiently large. In the
general case if f does not vanish in the complement of a compact
set, there exists a compact X such that < d(X'Kf) (by the
definition of ), then by the preceding argument it follows that
A< E(X f ) SW(f) < H(f) for sufficiently large n. This ends

the proof.

Corollary Let f ¢ T ——> [0, +o0] be a p-measurable function.

Then p(f) =  sup Idfgdu[ where g = 3 a."X,A. is a simple
Iglg_f ST i
function (in which one may take A compact) .

Proof By the preceding theorem it suffices to prove this when £
is bounded and has compact support, whence E:iil(n). In that
case if A\ < g(f) there exists Y & & with 1<¥{ <1 such that

A< ]_[ @ fdp] (1l.4d ). Now there exists a sequence (g.)
' Nn > 1
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of p-measurable simple functions such that gn(t) —> @ (t) £(t)

and ﬂgnﬁ < f . By the dominated convergence theorem jﬂgndu

tends to jﬁfdu ; Whence

Yy oy £ 0

ey =
}\,<|fgo.ug =]z aiu(Al

for some simple function g with g < f . Finally by 2.5 the
sets Ai may be replaced by compact sets Ki_C:Ai without modify-—
ing the desired conditions, which proves the corollary.

Thus it is seen that many of the properties of the elementary
integration theory for real or complex Radon measures are shared by
Radon measures with values in complete metric topological vector
spaces. There is an important difference however. Even when E
is a Banach space and u is an E valued Radon measure there may
exist finite and even bounded p-measurable functions f such that
n(]f]) <+ © and such that f is not p-integrable. (Thus if

T is discrete the injection JC(T) Cs Zio(T) is a Radon measure

w(f) = sup f£(t), but 1 #. lil(u)). Nevertheless we shall prove
t&T
P

later (§h) that if E =L 0 < p< + o every p-measurable function

such that u(]f])<+ o is p-integrable. Furthermore every Radon

|2

map p ¢ JC(T) --—> L is a Radon measure.

(1 gee also [14] p. 122,
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§3 Characteristic properties of Radon measures." Weak compactness'.

We continue to consider the case here where E 1s a complete

metric topological vector space.

3,1 Theorem Let u : X (T) —> E be a Radon map. Then the
following conditions are ecuivalent:
1) le(u) contains all bounded Borel functions with compact
support (i.e. p 1is a Radon measure).
el ) / .
2) {.7(u) contains each ?LK , Wwhere K 1s a compact GS .
3) For every sequence (<p_) <p_ & K(T) such that
gy, B

z jep (0)] < Yy for some compact set K, lim wu(<¢ ) = 0.
n>1 N - n-—=>00 B

L) For every bounded lower semi-continuous function with compact
support, and every & > 0, there exists < X(T) such

that 0< &@ < f and w(f-¢9) < e .

Proof 1) => 2) =>3)=>4)=>1). The first implication is

obvious. For the second we prove under hypothesis 2).

Y
Lemma Let (w ) be a sequence of open X _s such that
"n>1 o3

w, Dw ., and Quw, = @ . Then l%m i(w ) = 0.

Proof If «w 1s an open Kc' and X 1s a compact G6 such that
WCK K- w 1is a compact Gg . Hence 7(@ = >(K -'}4 K o ({Ll(u).

Then by Theorem 1.10 inf WX -%) =0 and a fortiori
0<F<Hw ¥
supp ¢ C
inf w(w -X) = 0, where X is compact. Thus for the given
K Cw
sequence we can find compact sets Kn C:ugn such that
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n n
r - € =M = . - K.
”(an Kn) < /2n - It Hy =4, Ki ’ an Hn C:;:i Q)l Ky
whence ﬁ(cun - Hn) < e, and since H = ¢ for some n, we have
d(u)n) < € , which proves the lemma.
This now implies 3). Given (C|‘>n)n>l with §ngrn(tﬂ < }_K(t).

Let R (t) = 2 ﬁCf.(t)j. Then R is lower semi-continuous,
n i>n 1 n

hence w_ = {t: R_(t) > e}l dis open and KD w,Dw,, 1 while

‘RLUn = ¢ . Furthermore wp is a K_, namely the union of
i=n+m 1

n

the compact sets K = {t S > gCP.(t)ﬂ > £ + —}. Thus
m i=n 1 l . m

lim M(Q)n) = 0. Consequently by Theorem l.11 (or directly)

n

lim E(Rn)= 0 and since !u(cfn)iﬁ J(lcfn!)g Q(Rn) the conclusion
follows.

We next prove 3) => 4). Let f >0 be as given, and
assume on the contrary that W(f —<¢) >a >0 for all ¢ & X(T)
with 0 <Y < f . Then we can inductively define a sequence

n
(¢ .) such that = | @.(t)] < f(t) and Ju Nl >a .
P, 5 2P <1 (.
Indeed if the construction is done up to the rank n - 1,

n-1
Nl = i%q_icfiﬁ) > a, and consequently there exists Cen+l E X

n—-1
such that icfn+lﬂ < f - izl ﬂ(fii and iu(c?n+l)ﬂ> o . But from

3) it follows that lgm “(CFn) = 0. This contradiction proves 4),
which implies f & Il(u). In particular Xw Ezl(u) for all
relatively compact open sets. Now if K 1is an arbitrary compact
K has a relatively compact open neighborhood &3, and

'yk ='}(o - XQO—K « lil(u), whence p is a Radon measure by

Theorem 2.1.

3.2 Corollary When u is additive on the lower semi-continuous

functions ¢ is a Radon measure. This is the case when E =€ or
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or IR with the usual absoclute value,.

Proof The first assertion follows from Theorem 1.2 and condition
4) in the above theorem, since u(f-%) = g(f) - g(¢ ).

Assume E =€ , and let fl and f2 be lower semi-continuous.
Let 2 < J(fl) a, < W(£f,), and choose <P, & X (T) such that

< lu( < i)ﬁ; multiplying <p, and <, by a constant of unit

modulus if necessary, this can be done such that ﬂu(<€i)ﬂ =u(@,).

Then Xy + 2 < u(Qy) + w(Cpo)= u(F+P,) = fu( P+l <u(fy+ £5)
since | ?ﬁ + @zl < ICfl|+ I@ZI < fy + £, . Thus 2y and X,
being arbitrary d(fl) + w(fy) < d(fl+-f2) which together with
1.2b proves the additivity (l>.

Using condition 3) we shall later characterise the spaces
E  such that an arbitrary E-valued Radon map 1s a Radon measure.

We now consider a Radon map p ¢ X (T) —> & which is bounded
(i.e. {M(Cp)}iq,] <1 is bounded in L), or equivalently which is
continuous for the topology of uniform convergence in T: For every
e >0 there is & > 0 such that | @} < & implies [u()| <,

and consequently (&)< e. Then p has a continuous extension to

the space ZfO(T) of continuous functions tending to .

(1) One thus cdefines a »Dositive Radon measure {u{, total variation

of u, by putting {|ui(9Y) = () for < >0, and by 1.2,

ul” = w, whence L1(lul) = 1), anc

Jﬁlfidlul < Il (1) = L(Jf)) with equality for f & X and
consequently everywhere: u(if]) jpif[clwl for all f C:Jﬁl
By 1.4d) flfidap,l = P [ faml.

3%51



383

zero at infinity. DMore precisely we then have (?O(T) C;>,£fl(u),
for if f & Z:O(T) and (p & X (T) with {f -9 | < § it follows
that W(]f-9]) <u( §) <e, and if |f] <& w(ifl) <e . Thus
the restriction to CQ(T) of the integral f —> J[fdp coincides

with the continuous extension of pu to &DO(T).

3.3 Theorem Let u :X (T) =—>E be a bounded Radon map. Then
the following conditions are equivalent:
1) Jil(,u) contains all bounded Borel functions.
2) u 1is a Radon measure and 1 & I,l(u).
3) For every bounded lower semi-continuous function f > 0, and
€ > 0, there exists P C X with 0<4@ < f and p(f-9F) <e.
L) a) TFor every compact set K and € > O there exists an open
set W DK such that w(w-K) <e, and
b) For every e > O there exists a compact set K such that
1w ( T-K) < e.

5) For every open set & there exists K (C &, compact such that

wlw - X) < e,

6) For every sequence (wn)n>l of open sets such that wW_ Jw 4
1 N = i n ;
and flw 4} lrl1m ,.L((_,_)n) Q.
7)  For every sequence (W) - of disjoint open sets
n

lim u(w ) = 0.
N n

3) For every sequence (Kp) of disjoint compact sets

n_>_l

lim p(X_ ) = O.

o n

9) For every sequence (% ) o1 SN Y. (T), such that
n

5@ (0] <1, limu( %,) = 0.
n - n
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10) W transforms weakly compact subsets of G’O(T) into

b

relatively compact subsets of & .

Proof For the moment we leave aside condition 10) which is
different from the others in that it only involves the Banach space
structure of KZATQ, The equivalence of the other conditions will

be proved as follows:

8) =>7) => 5) —>14) —> 2)

N

1) 1)

=
~

6) ==—= 9) =——=> 3) =—=> 2)

Top line: 1) implies §) by the dominated convergence theorem.
8) =7 by proposition 1,7.

7) => 5).Assume p(w -K) > a for all compact sets K (C w .
Then one can inductively define a sequence of disjoint open sets

W, , whose closure is compact and contained in w , such that

n (u)n) > a 1in contradiction with 7. Assume the construction

n-1
done up to rank n-1, and let K = U o; - Then K CWw and K

is compact, whence (W~ K) > a, an;_ty 1.7 there exists a

compact set H (CwW-K such that p(H) >a . Let w be an open
neighborhood of H with compact closure such that H C:LOIIC:E%1C:w-K“
Then M(cun) > a and the sequence (U)i)i=1—n satisfies the
induction hypothesis.

5) => L) Db) is obvious. For a) let O be an open neighborhood
of K 3 then there exists a compact H(( O - X such that

w( 0-K-H) < ¢ whence p(ur-K) < € where W=0-H.
L) => 2) For w DK there exists P & K with }k g S ¢ < X W 9
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whence by a) p(9 —YiK) < & and consequently ‘}LK - Iil(u). Thus
a) implies that up 1is a Radon measure anc similarly b) dimplies
1€ LHw).

2) ==>1) by Theorem 1.9.

Bottom line: 1) implies 6) by the dominated convergence theorem.
6) => 9) => 3) The proof is entirely similar to the proof of
Theorem 3.1.

3) => 2) For u 1is a Racon measure by Theorem 3.1 and applying
condition 3) with f =1 it is obvious that 1& L1 .

This ends the proof of the eguivalence of the first nine conditions.

3.4 Definition We shall say that a Radon map which satisfies the

above conditions possesses the global extension property (as opposed

to Radon measures which have the local extension property).

If T is infinite discrete the natural injection
w2 ) (T) ——=> KO(T) has the local but not the global extension
property, since L = 'FE(T) and 1 & jil(u).

If p : 'KO(T) —> 0 1is a Continuous lineqy form it again

e #E:d C. eos

follows from the additivity of 1 on an¢ condition 3 or 7
in Theorem 3.3, that p has the global extension property (which
is of course well known). In particular it follows from the
dominated convergence theorem that a sequence (fn)n>l of function
£ - Z;(T) converges weakly to f & Zl#iﬁ, if and only if

(£) is uniformly bounded and f(t) = lim £ _(t) for all <.
Dn>1 n &

Let us now prove the eguivalence of condition 10) with the
otherss 1) implies 10): let H C E;(T) be weakly compact. To

show that p(H) is relatively compact it suffices, E being
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metrisable, to prove that any sequence (fn) extracted from
n>1

H contains a subsecduence (fn ) such that _h(fn ) = U/fn ci
S K> K K
converges in & . Now by the theorem of Iberlein-Smulian there
exists a subsequence (an) which converges weakly to some f & H.
Thus 3an(1;)] <M and f, (t) ——> £(t) for all t, and by the
. K

dominated convergence theorem appliecd to p, u(an) = j”fnl dp

tends to Hf fdu . Conversely 10) dimplies 9). Let
1L e - [F S | & -~y
iakﬁn(u)! < 1. Then (Pn(t) tends to zero, consequently ¢ = tends
weakly to zero in 51)(T) by the above remarks. Thus by hypothesis
the sequence {u(q>n)} is relatively compact in E. To prove that
it tends to zero it suffices to prove that for any subsequence
(%y) such that u(tpn ) converges, lim p(¢,.) = 0. Assume
K K UK K e
then that =x = l%m u(q)n ), and extracting if necessary another
' ! | 1) —_—
subsequence of ) assume >jx = p(< | < +oo( . Then BE
(CFHK K K PHK)

n
being complete the sums TZl X - u(CFnK) converges as n tends %o

1

infinity, that is lim nx - M(%/ ) = v exists, where
n N——> 00 n 3
Yoo= DI . Thus 1lim x -p( =YV_)=0
noog=l oy g n n )

(1) The use of series in this connection was suggested by Ph. Turpin.
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. IR | s 1 1
ijees X = l;m M(E W)n). But iTh(t)! <1, hence = %Jn tends to

zero uniformly and consequently x = O. This ends the proof of

Theorem 3.3.

Remark Tt is known (1) that when E 1is locally convex

condition 10) is equivalent to:

11) i1 maps bounded subsets into weakly relatively compact sub-

sets, i.e. u 1is weakly compact.

Furthermore if L = 1?“%1) the space of bounded scalar

families (xi) with the norm sup |>;], & bounded Radon
i€ icI

measure g ¢ Zfo(T) —> F is of the form wp(Y) = (“i(CP))iGZI

where (ui)iGZI is a uniformly bounded family of complex Radon

measures. We then have Jp(P)l = Supiu.(CF)I and
: i
ic I
plw) = Supiuia(oJ) when @ 1is an open set, and the weak
i1

(1) See A. Grothendieck [5], Theorem 4, p. 153 and preceding

remarke.
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compactness of the map u 1s equivalent to the fact that the family
(ui)iC:I is weakly relatively compact in 17(T) = E;(T)' (the weak
topology being G(M,M'}). In that sense it can be said that the
conditions in Theorem 3.3 are generalizations of knownweak
compactness criteria (every Banach space is a closed subspace of some
space {NYI)).

Condition 6) is by the dominated convergence theorem
equivalent to the slightly stronger requirement:
6') For any sequence (An)n_>l of Borel sets with An;:)An+l and
Q}Ah.= @ l%m w(A ) = O. If;i:(ui)iézl this would be called

uniform countable additivity for the family (p5) . (or rather
i

I
(iuiﬂ)iEI).

There is another weak compactness criterion, due to Bartle,
Dunford and Schwartz (and which is the basis of their theory of
abstract vector measures): namely}hniform absolute Continuityn° In
our case clearly if there exists a bounded positive measure 3 such
that 1im w(A) = 0 (where A 1is a Borel set) the conditions

A(A) =0
in Theorem 3.3 are satisfied. Now when u has the global
extension property (i.e. is a Radon measure for which 1 ijﬂlun)
it is easy to see in the usual way that the following conditions are

equivalent, A Dbeing a Borel set:

a) lim p(d) =0
A(A) =>o0

b) A(A) =0 implies p(A) =0

c)  a(X) 0, K compact,implies un(kK) = O.

When L is locally convex it follows from the work of Bartle,

Dunford and Schwartz that there exists a bounded positive measure X\
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such that 2(A) = 0 is equivalent to p(A) = 0. In other terms:
the Boolean o - algebra of Borel sets modulo the p-negligible sets
(with the metric p(A A B) for which it is complete) is a measure
algebra. When E 1s not locally convex we do not know whether
this is the case even when T = [0, 1]. If such a measure A were
known to exist certain of the theorems in 82 could be deduced from
the corresponding theorems for ordinary measures (e.g. Theorem 2.5
could be deduced from Egoroff's theorem).

We now give an example which shows that condition 2) in Theorem

3.1 cannot be much weakened.

3.5 FExample of a Radon map u : ([0, 1] —> & where E 1is a
Banach space, and such that ‘f'l(u) contains all step functions,
and consecuently their uniform limits the ruled functions, but such

that o is not a Radon measure.

Construction: Let F : [0, 1] —> [0, 1] be the well known

continuous non-decreasing singular function such that F(0) =0

_ ' _ - o
F(1) =1 and F'(t) =0 a.e, and let (Fn)nzl be a sequence of
absolutely continuous, non-decreasing functions converging uniformly
to F (for example the functions usually used to construct TF as

a limit). Then for every continuous function & &ro, 17,

1ql_iz>n°o fo ar, = Jlrif dF . We take E = c(N) the space of
convergent sequences X = (}\,n)n_>l with the norm (x| = Sgp‘knl and
we put = fcodF_ . f”fdt if

p H'(CF) { l ﬂ}n>l [ ] = }1’1>l 5

x
Fn(x) = S fn(t)dt which we may assume. Then if & 1is an open set
o)
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hd@)ﬁ sup sun }J#fdﬂ =Swjff(ﬁ
._Xw n %CVJSXLQ & n Jg B

I

w(w) = sup
P |

¢

In particular if @ is an open interval (a,b) or [0,b) or (a,1],

\ p(w) = Sgp Fn(b) - Fn(a)
Now since Fn converges uniformly the sequence (Fn) is equi-
continuous (but not equi-absolutely continuous which is the point of
the construction) and consequently for every & > O there exists &
such that {(b-aj < 6 implies wu¥(a,b) <e . In particular u({c}l) =0

for any c¢ &[0, 1]. Now let I be any interval with extremities

f 1 i
a, b such that 0 < a<b< 1. Then we can find a , ai, b', B

with a' <a< < <b<b (and the equalities holding only if

2 =0 or b=1) such that I = (a', b') 4is open (in [0, 1])

1

§ T . ) 51
E = [a‘, b ] is closed and such that u(I'—-I“) < u(a', a ) +

@]
o

u'(b", b') < &, and since 7" C1 C:IT a fortiori p(I- ) <

IN
<
=

Since there exists a continuous function ¢ suchthat 7(In < ¢
it follows that ﬁ(?fl - &) < e, consequently 'Xi[qut}(u).
Thus Jil(u) contains all step functions (linear combinations of
characteristic functions of intervals) and their uniform limits
the ruled functions. It remains to show that wu is not a Radon
measure. Let p(A) = | /; fndt} when A 1is a Borel set and

n>1
assume w(A) € c(N) for all Borel sets. Then by the theorem of

Vitali-Hahn-Saks, for every & > O there is § such that measure

~

(4) < & implies ‘jA fdt <e for all n, in particular for
'I - i . .

0 < 89< by <8y <ty wee 5, <t <1 f lt,-s,] <& implies

? Fn(ti) - Fn(si) < e for all n, whence ; F(ti)— F(si) <€

But this is contradictory because F is not absolutely continuous-

Thus we do not have E(A) & (C.A fortiori p 1is not a Radon

¢(N)
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measure (cf. Th. L.la ). The above example is also an example
of a case where we have a continuous function t —> x(t) & B
such that for all <p & &[0, 1] the Stieltjes integral
) n
w(YP) = ,[CP dx = lim izl %9(§;i)x(ti) - x(ui_l)
i . & —_ 3 — | —
0=t , <& <t <8<t « <5 <t =1 1in suplt;~t; ;1 = 0)

exists but where p is not a Radon measure. However we have the

followings

3.6 Proposition Let m : I —> m(I) Dbe an additive function

defined on the bounded intervals of IR, and for the step function

n n
i s izq.ai WLIi put m(f) = izl oy m(Ii). Then there exists a Radon

measure 1 : YC(iR) =—> E such that m(I) = u(I) if and only if
m has the following property: lim f (t) =0, [fn(t)i <1, and
n
fn(t) — 0 in the complement of a bounded interval, implies
1im m(f ) = O.
N n

Proof Obviously the condition is necessary by the dominated
convergence theorem since m(I) = L(I) dimplies m(f) =_/‘f dp .
Conversely the condition first implies that m may be continuously
extended to the ruled functions with compact support and the given
convergence property of m then clearly extends to the ruled
functions also. Thus if we put p(¥) =m(¥) for ¢ X(T) w
is a Radon measure by Theorem 3.1 property 3)., It remains to show
that m(I) = wu(I). Given a bounded interval I there exists a
sequence of continuous functions (Cfn) such that

n>1
l%m qh(t) = )LI(t), i(pn(t)i <1 and supp ¢, contained in a
neighborhood of I. Then m((fn) = u(CPn) tends to m(I) Dby the

hypothesis on m, and to p(I) by the dominated convergence theorem.
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3.7 Corollary Let m Dbe an additive interval function and assume
its extension to the step functions is continuous for the topology
induced by some space LP())), (0O< p<+o ) where VY is a positive
lacdon measure on R; Then there is a Radon measure p ¢ ff(ﬁw —> K

such that m(I) = u(I).

3.8 Example B = LZ(Jl-, P) (gyl, P) Probability space, and
t —> X(t) is standard Brownian motion. Put for f==2ai;X%t 6. ]
i-1? 71

m(f) = = aj(X(ti) - X(ti_l)) then, because of the orthonality of the
. = 2 B A2

increments Im(l)l2 = 3 Iai] (ti - ti_l) = ]‘Ifi dt . Thus

(<) :Jﬁ? dX exists and ﬁu(Cp)ﬁz = df iCP“2<?t, whence for

f >0 «L.s.c. u(f)z = | ?upf‘[lq3l2ch;=_jxf ¢t and consequently
g <

l:l(u) = Jiz())) where 3/ is Lebesgue measure.



§h Extension to arbitrary topological vector spaces.

Let £ be a separated topological vector space (l)o A
Radon map :dC (T) —> § 1is by definition a linear map such
that for every compact set K (_T +the restriction of u to the
space 4 (T, K) of functions Q@ = ¥ (T) with support in K,
is continuous with respect to uniform convergence. Let x —> ﬂxﬂd
be a continuous invariant pseudo-metric on E (ﬂx+yfd5;]xﬂd+ ﬁyﬁd ,
ikxﬂd < ﬂxﬂd for Al <1, X%%g)ﬂxﬂd =0), let B4 be the
completion of the associated metric t.v.s. E4 _ ixﬂd==0} and
let Ty b E —> Ed be the quotient map. The topology in E is then

the coarsest for which all the linear maps Ty are continuous.

(1)

It is not essential to assume E separated for the definition
of le(u), but \/:fdu can be cdefined unambiguously only when

E 1is separated,
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We put g = T3 O M, so that Mg is a Radon map with values in

E, . Then for f >0 lower semi-continuous u,(f) = sup ju(<P)i{, .

We define a function or set te be p-integrable (resp. to possess
the Lusin property with respect to u, resp. to be p-negligible) if
it 1s Bg — integrable (resp. possesses the Lusin property with
respect to Hg s TeSpe is Hg — negligible) for every d. Thus
Ll = {;)‘ﬁ?(“d)° The topology in Jil(u) is by definition

the coarsest for which the injections ct;(u) S Iil(ud) are

continuous, i.e. the one definec by the invariant pseudo-metrics

Thus ifl(u) is a topological vector space. The associated
Hausdorff space Ll(u) is the quotient space le(u)/N(u) where
N(w) is the subspace of functions equal to zero p— almost
everywhere, The space Ll(u) is not in general complete or even
quasi-complete (l).

Since EM(C?)ﬂd < ué(ﬂﬁ?ﬂ), and & (T) is dense in le(u),
the map u© has a unique continuous extension f—> Jﬂfdu from

raS
I:l(u) to the completion I of BE.

(1) See remarks preceding Theorem 6.3,
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By definition w 1is a Radon measure when jﬂl(u) contains
all bounded Borel functions with compact support, equivalently when

uw is a Racdon measure for all d. In that case the sets in the

~a
/‘)LL'!
o - algebra B* = (Tyb © are called u-measurable and the
d

BH_measurable functions, which are precisely the ones having the
Lusin property with respect to p , are also called p-measurable.
The following theorem summarises the essential properties and can be

used instead of the above definitions:

L.1 Theorem a) E and F being separated topological vector spaces;
let u 2 E —> F Dbe a continuous linear map and put Y =uo M
where & 1is an E-valued Radon map. Thaxlf(u) Cs Jﬁl(y), the
injection being continuous, and v[fWiU = uj'f(iu for every f‘E:l:l(u)
(u designating the continuous extension of the given linear map to
the completions of E and F).

Every function with the Lusin property for p has the
Lusin property for V .

If p is a Radon measure So 1is Y and every p-measurable
function is ) -measurable. Finally every n-negligible set 1s
Y-negligible.

b) Assume the topology of E is the coarsest for which linear

maps U ¢ E ——> Ei into topoligical vector spaces are continuous
and put p; = U; O W . Then Jpl(u) (ﬂ If (1. ), the topology of
f1(n) Dbeing the coarsest for which the injections Lr (u)C;> Ll(u. i)
are continuous. In particular p is a Racon measure if and only if
p; is a Radon measure for all i and in that case B g f} B

and a function is w-measurable iff it is By = measurable for all i

Finally a set is p-negligible iff it is ui-negligible for all 1.
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Proof For a) observe that if y—> ﬁyﬂg is a continuous in-

variant pseudo-metric on F, x —> ﬂu(x)ﬁg = ﬂxid is B EHETEE

invariant pseudo-metric on E and for >0 l.s. ¢y

w0 = swp 1V (#)g = swp Iu(¥)lg = Hy(0),

®it 1<
whence :yb = uy .
For the proof of b) observe that if | |, , | | ee 11
d dl dn
are continuous pseudo-metric on E such that ﬁxﬁdi<:ei,i =1l— n

implies ixid <€, then £ >0 and Wy (f) <e; i =1-—n implies
‘ i

uh(f)fgs. Thus one may in the definition of ;Cl(p) etc, restrict

oneself to a fundamental family of invariant pseudo-metrics and the

verification of b) presents no difficulty. We leave the details of

the proof to the reader.

Corollary If E is a locally convex space one can take the spaces Ei
to be Banach spaces, in which case Ll(ui) is a Banach space, and
jil(u)=42)(£;(ui) is locally convex. If furthermore E 1is metrisable,
Ll(u) is a Frechet space and its topology, as defined in 81, is the
coarsest for which the canonical maps Ll(u)-——> Ll(ui) are

(1)

continuous

L.2 Theorem Let E be a quasi-complete separated topological

vector space (in E closed bounded sets are complete). Then
Jffdu CE for all f & Ll).

~ N~
Proof Let E be the completion of E. Then ‘[fduE:E and it
suffices to prove that J[f(hL is in the closure of a bounded subset
of E. We may assume f > 0, and we first further assume that f 1is

bounded and has compact support, e.g, O < f SJXK. Then if H

Thus the present definition coincides, when E is locally convex,

with the definition of Qfl(u) previously given in [14].
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is a compact neighborhood of X, f is in le(u) in the closure
of the set [P C X(T): || S'X_H} anc ]}wju is in the closure
of the set {u(QO}ﬂC?i S.?iH , whence jqfdu ©E. If f has
compact support but is no longer bounded we put fo= inf(f,n) and
observe that f = lém £ in lil(u) (by Theorem 1.113 see also
the proof of Theorem 1.9). Then jﬂf(hL= 1%@~ffndu , and a convergent
sequence being bounded, Jff ¢uw & E. Finally in general this proves
that _[C?fd“ ©E for all © X(T). Now clearly f is in

111(”) in the closure of the bounded set {CPf}iQPI and

s1
consequently Jﬁfdll is in the closure of {-/hPi‘du%C$i <1’ whence
ffdu c E. -

By applying Theorem 4.1 to the case where the spaces Ei are
complete metric spaces some of the results obtained in
the previous sections can be immediately generalised to the case
of arbitrary topological vector spaces. We summarise them for later

reference:

k.3 Theorem Let u 3 JC(T) ——> E be a Radon map, where E is
a quasi-complete t.v.s.

1) Every £ E:,f}(u) possesses the Lusin property and conversely
if f possesses the Lusin property and {f] < g with g G:,t}(u),
it follows that f C Il(u).

2) If p is a Radon measure f possesses the Lusin property iff
f is measurable with respect to the & - algebra

B = {a :XA(\K EIl(u) Y K compact}, (in which case f is
called p-measurable)., All Borel functions are p-measurable.

3) The map p is a Radon measure (resp. has the global extension
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property) iff rzlic(an(t)i SZK(t) (resp. Zj¢ ()} <1) implies
lrllm u(c.pn) = 0.

!
4) If u 1is a Radon measure the 'dominated convergence theorem is
valid: If f (—:ﬁl(u), £ (t) tends to f(t) u a.e and ﬂfni <g
where g ELl(u), £, ‘tends to f in zl(u), which means that
fhfndu tends tofhf de in E , uniformly with respect to the
L—measurable functions h such that inl < 1.
5) If u is a Radon measure one has the following integrability
criterion: A complex function f 1is up—integrable iff f is
p-measurable and for every sequence (Kn) >1 of disjoint compact

n
sets such that f/K is continuous, the sequence (IK fdp) is
n = n
B-summable in &. When & is locally pseucdo-convex it is sufficient
that 1lim fd = Q.
n fKn o

6) Let (xi)- be a family of elements in E, and let

iE 1
L : & (I) —> E be the discrete measure cefined by

_ Ve - =1 . Toe .
p(e) = iZG-:I Cj'h(lz,fflLW,cThen £ & I (p) iff (f(l)xl)i(—:I is
J);'dp, =3 f(i)xi )

A a1serdS T
Concerning discret® measures we have:

B-summable and

L.4 Theorem Let E be a cuasi-complete t.v.s., and let
p 2 KX(T) -———> E Dbe a discrete measure: p(P) = CZ C_(J(i)xi . Then
i T

1) p is bounded (i.e. {'u(CF)}i‘-H<l is bounded in E) iff
(f(i)xi)i(—: . is summable for every f = (f(i))i€I Eco (1I).

2) When p is bounded the following are equivalents:

a) p has the global extension property (i.e £ * (1) Cil(u),
or 1E L),
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b) (xi)iEZI is B-summable.
c) (xi)iE:I is summable.

d) The map p© : cO(I) —> & is compact.

Proof Since I 1is a subspace of a product of complete metrisable
spaces it suffices to consicder the case where E 1is metrisable.
Boundedness being equivalent to continuity 1) is easily established
by reduction to the case where I =N is countable and by using the
Banach Steinhauss theorems In 2) a) and b) are obviously
equivalent by the last part of the preceding theorem. Condition d)
implies a) by Theorem 3.3. Since a weakly compact subset of cO(I)
is certainly bounded. Conversely a) dimplies d): Let fn(E:co(I)
with ifn(i)ﬂ < 1. There exists a countable subset J (I such
that fn(i) =0 for all n, and i & EJ. Thus one can extract a
subsequence fnk which converges pointwise, and consequently

u(fnk) = Jﬁfnk du converges in E by the dominated convergence
theorem, which proves d). It remains to prove that c¢) implies b)-
Let | | Dbe a metric defining the topology in E. By the continuity
there exists for every € >0 some § >0 such that <q=e;3<(1)
()i < § implies !Z Cp(i)xiﬂ < €, in particular for £ & &™)
and K (I a finite se%, If£(i)| < & implies | = f(i)xii <€
Now by ¢) if ' € ¢ * takes only a finite numéggng values
(£7(1)x;) o is sumsble. Choose £' such that [£(i)-f (i)l <§

1 (=
for all i. There exists a finite set KO such that for Kf\KO==¢

| = fw(j_)xii <e. Then | = f(i)x.]l <3¢, whence by
i€K iCK +
Cauchy's criterion (f(i)xi)_ is summable.
e —— v =

We now briefly describe a ééﬁbﬁamaéflnlticn’bf"jil(u) which
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is valid for arbitrary topological vector spaces and which involves
the neighborhoods of zero in E directly rather than the invariant
pseudo-metrics. However this will not be used anywhere except in
Theorem 5.4, the more important corollary of which can be formulated
and proved independently.

Let V be a neighborhood of zero in & which is closed and
balanced (n V(CV for |a] <1). Put ﬂxav= inf{x>0: x& 2 V}.
Then V = {x : ixiv < 1}. (Observe that O has a basis of such
neighborhoods). The semi-variation of a function f > 0 with

respect to V is defined, when f 1is lower semi-continuous, by:
we(f) = sup |u(Q)i
P T g e M

and for the other functions the definition is extended as in

definition 1l.1. We then have the following properties:

Le5 Theorem 1) a) f < g implies uﬁ(f) < u%(g). When (fi)

1E T
is an increasingly directed family of A£.s.c. functions with upper-
bound £,

T _ .
y(f) = sup wy(f,)

i I
b) ppAL) =xuy(f) 2 >0 (0x + 0 = 0)
woy(E) = c!z; py(f) o >0
c) W+ WCV (W closed balanced) implies
hy(f+85) < sup(up(£y), ni(£,))
d) uﬁ(f) =0 ¥ V is equivalent to f(t) =0 p a.e.

e) u",(f) < +00 V¥V V implies f(t) < +% 4 a.e.
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2) Let F(p) be the set of all complex functions such that
ub (1fl)< + © for all V, and let f'& = {f& 57(u)zu%(lfi)< 1}.
Then
a) Vv, CV, implies f"Vl C }“}2
b) aFV=yaV

- - (3 ‘ ¢ .."
¢) W+ WCV implies S +FW(:FV
Thus F (1) is a linear space (i.e. is stable under addition of
functions and multiplication by scalars) and the sets.F'% form a
basis of neighborhoodsof zero for a topology compatible with the
vector space structure, by virtue of which f (u) will now be

regarded as a t.v.s.

3) If (i Hd.) is a fundamental family of bounded continuous
pseudo-metricsloé—I%, the maps f ——> “ai(ifl) form a fundamental
family of continuous pseudo-metrics inuFd(u). In particular, when
E 1is metrisablé the separated space associated with J:’Yu) is

metrisable and [ (p) is complete.

4) F (1) contains all bounded functions with compact support, in
particular X(T) C }71u). The space lzl(u) is a closed linear

topological subspace of F °(un), precisely the closure of ¥ (T).

Proof The proof of 1) is similar to the proof of 1.2. It is
convenient to leave the proof of 1) d) and e) until after 3) since
for f & fr.(u)the statement d) is then obvious. For 3) observe
that the maps f —> ua'(ﬂfﬂ) are invariant pseudo-metrics on

5 () (finite since by assumption igp xﬁd < +00), If

o |
X B
V= {x: ﬂxid < e}, u%(ﬂfﬂ) <1 implies ua(ifi) < & » Thus they
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are continuous pseudo-metrics. Conversely if V is given and
ﬂx]di <e;, i=1;.0uyn implies x c v, uai(ifﬂ) < e; dimplies
u%(ﬂfi)s 1. The last assertion 4) now follows immediately from this.
We leave the details of the proof to the reader.

In terms of the space ¥ °(p) the Lusin property can be
formulated as follows: Let K be a compact set and let (Ki)iEZI
be the increasingly directed family of compact subsets Kr (_K such
that fﬂK‘ is continuous. Then f possesses the Lusin property
with respect to p iff ;(K is the limit of the X‘K. in the space
jr'(u). When p is a Radon measure 7(K and 7(K.l belong to
I}(u) and the consideration of F *(p) 1is not neceésary.

Observe that when E is a metric topological vector space with

a p-norm i.e a continuous pseudo-metric such that {ax] = |aP{x]

for all 2 & € and x €FE, we have, if we put V = {x : {x] < 1}
L 1

ﬂxiv = |x| /p , Whemce uﬁ = (p°) /p « In that case JF *(u) can be

described directly in terms of the given p-norm as

Frw) = {f e p (D) < + ool
and j:l(u) as the closure of J(T) in F°(p). In thet case
p*(Inf]) = IalPe(1£]) so that the semi-variation defines a p-norm
in Ll(u). When p =1, i.e. when E 1is normed, Ll(u) is a

Banach space.



§5 Measures with values in (C-spaces,

In this section we characterize the spaces E such that

arbitrary E-valued Radon maps are Radon measurss.

5.1 Definition Let E be an arbitrary t.v.s. A sequence (Xn)

n= N

is said to be a C-sequence when the finite sums X S . remain
n

bounded in E for ﬂxnﬂ < 1, (i.e when the discrete measure with
mass x  at n is bounded) .
The space E is said to be a C-space when every C-sequence

tends to zero.

Remark When E is quasi-complete (or sequentially complete)()%g cn
SEmAPR ne
is a C-sequence iff (c_x_) is summable for every sequence (c )
R Y =
tending to zero (see Theorem 4.4). In that case when E 1is a C-space
every C-seguence is summable and even B—summable(l). Thus we are

following in that case the definitions of L. Schwartz [11].

5.2 Theorem Let E be a C-space and let u : K (T) —> E be a
Radon map. Then up 1is a Radon measure. If p 1is bounded p has

the global extension property.

Proof Let Cen(—:)f’C(T) with Zj<p (£)] < Wy(t)  (resp. ¢, (£)i< D).
Then (CPn) is a C=-sequence in }C(T, K) (resp. in ZfO(T)),
n

consequently (u(Cpn)) is a C-sequence in T, whence limli(Cfn)==O
n n

(1) Observe that if the finite sets Kn are disjoint the sequence

x. 1s also a C-secuence., Thus if every (C-sequence tends
n 1 1

= 3
'__T
lC:Kn

to zero, every C-sequence satisfies Cauchy's condition for summability,

and is summable. Also, if (xn) is a C-sequence so is (knxn) with
n

(xn) E:(fua. Thus (xnxﬂ) is summable and (xn) is B-summable (L.b4

is not needed here).
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and the conclusion follows from Theorem 4.3.

5.3 Theorem Let E be a guasi-complete C-space, and let
w s § (T) ———> E be a Radon map. Then a function f 1is u-integrable
iff it is p-measurable and u%(ifﬂ) < + o for all V. In particular

Borel functions such that u%(ﬁf%) < + oo for all V are w-—integrable.

5.4 Corollary. Assume the topology of the C-space E is defined
by a p-norm (|x+yi < Ixi+ivl, iax] = Ial®lx}). Then every
p-measurable function, in particular every Borel function, f such
that p*(]f}) < + © is p-integrable. Furthermore if (fn)n:>l is
a sequence of nonnegative p-integrable functions such that

lim u°(fn) <+ 00, £(t) = 1lim fn(t) is finite p a.e, f is

n o
u—integrable and up°(f) < lim u“(fn).

Proof The conditions of Theorem 5.3 are obviously necessary. To

prove the sufficiency let (Kn) 1 be a sequence of disjoint compact
n>

sets such that f/'Kn is continuous, and let f_ =_)Man. Then
1= xnfnﬁ < |f] for any finite sequence (Ln) with ﬁkni < 1,

° 1 a ] © ] b “ i — i
whence pg(i= knfni) < uv(ufﬂ), thus (fn)q:>l is a C-sequence in
]:l(u), whence (h/fnd“> is a C-sequenéé in E and consequently

n>]1
B-summable which implies that f is p—integrable by Theorem 4.3 5)-
The corollary now follows from the remarks in 84 and Theorem
2.16. Without using the semi-variations py 1t can be proved

directly using the following lemma the proof of which 1is left to

the reader:

Lemma If Jax] = IniPlx), w(IafD = a2 oo (ifh), v (f) < +

implies f(t) < oo a.e. A set H C:jil(u) is bounded iff
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sup u°({f]) < + o0 .
fCH

Examples of C-spaces.

1) Locally convex C-spaces.

Proposition Let E be a quasi-complete (or even sequentially

complete) locally convex space. A sequence (xn) is a C-sequence
n>1

? et ! R
iff I< X 5 X >] < + % for every continuous linear form x E E
n
B 1s a GC-space iff for every C-sequence there exists x € E

such that

i 1 T
< X, x>=2<xn9 x\> for all X & E .
n

In particular if E is weakly sequentially complete, and more

(1)

particularly if E 1is semi-reflexive, E 1is a C-space

Proof The finite sums Zn N, X, are bounded iff they are

1 7 .
weakly bounded; but  sup j<zxx , x> =3l<x,x >1,
nn o n

ol <1

whence the first assertion., If E is a C(C-space x = I X, exists

? 1
in E, a fortiori < x, x > =3< X5 X >. Conversely the
n

hypothesis implies that for every subset A (_N, there exists

1 t )
S pr X > = n%ZA < x,» X > whence (xn) is

summable by Orlicz theorem.

A & E such that < S

If E 1is a separable Banach space

(l)In [14], spaces with this property are termed weakly S-complete.
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which is a dual space E is also a C-space. This can be proved
using a theorem of R. S. Phillips [9] p. 530, according to which
every continuous linear map from cO(N) to E is compact, and
Theorem L.L4, or by using a generalization of Orlicz' theorem (l).
In particular the spaces Lp, 1 <p<+ o are C(-spaces.
(Whereas ((X) and L, isomorphic to a space C’(K), is not,

unless K is finite, since the identity map 0 (K) —> C (K)

does not have the extension property.

2) L. Schwartz [11] has shown that the spaces LP(V) (0< p<1,VY >0
and L°(Y), the space of equivalence classes of 7 —measurable
functions with the topology of convergence in measure (Y bounded)
are C-spaces,
Clearly if the topology of E 1is the coarsest for which
linear maps R E ——> Ei into C(C-spaces are continuous, k&
is also a C-space. Thus if Y is unbounded the space L°(V)
with the topology of convergence in measure on every set of finite

measure (or on every compact set if V is a positive Radon

measure) 1is a C-space.

(1) See [14] p. 141 and 130.
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3) Orlicz spaces

Matuszewska and Orlicz [7] have characterised a class of

modular spmaces with the property (0) that all secquences (Xn)nﬂfﬁ

for which the finite sum ;%{xn are bounded are summable. A space
with the property (0) 12:3 fortiori a C-space. Matuszewska anc
Orlicz show that a space L*CF(p) has the property (0) 1if and only
if there exists k such that ¢ (2u) <k ((u) for u sufficiently
large, ([7] Theorem 4).  Thus these spaces ¥ () are

C-spaces.

Remark When E is a C-space and p 1s an E valued Radon measure
it has been shown that Ll(u) is a C-space at least when E is a
Banach space. Whether this is the case in general is an unsolved
question even when E 1is metrisable.

By definition E 1is a C-space iff every bounded discrete Radon
map u ¢ L (N) ——> E has the global extension property. Thus the
affirmations of 5.2 are true only for C-spaces. Applying the follow-
ing theorem with E = F, u the identity map it is seen that at least
among sequentially complete spaces(l) the C-spaces are the only
spaces for which an arbitrary Radon map u : Z’ro, 1] —> E is a

Radon measure.

5.5 Theorem Let E be a seguentially complete t.v.s, let F be

(l)The completion of a metrisable C~space is easily seen to be a
C—spaces,
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a teves and u : E —> F a continuous linear map. Then the
following conditions are equivalent:

1) For every E-valued Radon map u , u o W 1is a Radon measure.
2) TFor every bounded E-valued Radon map B, u o J has the
global extension property.

3) For every Radon map u 3 &[0, 1] —>E, u o p is a Radon
measure.

4,) TFor every C-sequence (Xn)nGTN in E,Iligmwu(xn) = O

Here [0, 1] may be replaced by any other infinite metrisable

compact space.

Proof L) => 2) => 1) ==> 3 => 4).

L) => 2) Let cpnc-:gn‘;(T) zicyn(t)s < 1. Then (¢p,)) 1is a
C-sequence in ”g;(T) hence (u(CPn)) is a C-sequence in E and
(uow) (an) tends to zero.

2) =>1) If u : J_(T) —> E is a Radon measure the restriction
to K (w) where ¢ is a relatively compact open set is a bounded
Radon map, hence measure, and it follows that p 1is itself a Radon
measure.

3) => L) Let K be a compact metrisable space and assume every

we
Radon map u : 6 (K) —> E iéfa Radon measure. Let (xn) be a
n

J >1
C~sequence in E. Let (tn) - be a convergent sequence in K with
n

limit t and t_ £ t for n#m and let p : G (k) —> c, be
the map defined by p(¢) = {P(v) - P (v) 51 « Let
n(e) =3 [@(v) =< ()]x, « Then n : © (k) —> E 1is a Radon

map and by hypothesis u o g 1is a Radon measure and clearly

wouwm ({t.}) =u(x). Conseguently 1lim u(x_ ) = O.
n n o n
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S6  The use of weaker topologies.

In the case of a locally convex space & the weak topology is
useful in integration theory as is shown by previous work in the
subject which usually relies on the existance of continuous linear
forms. In the general case one may still make use of weaker topologies.
Thus in 1P 0 < p < + o we may consider the topology of convergence
in measure., When E 1is locally convex it can be useful to consider
topologies which are weaker than o ( B, E') but still separated.

In what follows E and F will be separated topological vector
spaces with a continuous injective map Jj : & (. F by means of which
E 1is usually identified with a linear subspace of F. We assume

always that E 1is quasi-complete. No such hypothesis is necessary

on Fg we can always complete F without modifying the assumption.
Sometimes the space F coincides with E as a linear space but is
equipped with a weaker topology.

Given a Radon map @ : KT(T) —> & we write ﬁ’= Jouwp .
Then by Theorem 4.1 jfl(u) G lil(z) which gives rise to a natural
map LY(p) —> 1), and ffcﬁf=j ffc‘-.p, for all £ & Lr(u).
When identifying E with a subspace of F we writeuff dﬁ e jhf [ITR
When up 1is a Radon meaéure, so 1is 'ﬁ and every p-measurable
(resp. p-negligible) function is’ﬁ—measurable (resp.'ﬁLnegligible)

by Theorem L4.1l.

6.1 Theorem Let p : K (T) —> E be a Radon measure, [ being
a quasi-complete separated t.ve.s. Assume E (5 F and let
~J

n =3 ow. Then a function or set is p~measurable (resp.

~J
w-negligible) if and only if it is m-measurable (resp.'ﬁ—negligible).
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~J
Proof Lemma 1 The natural map Ll(u) _— Ll(u) is injective.

Let V ©be a neighborhood of zero in E and let

Uy -rethw : [granev YeEr ¥ ga (D, 9l <1l

Then by Theorem 1.4 d) the sets uV constitute a fundamental
set of neighborhoods of zero in Ll(p.) when V runs through such a
fundamental set in E. Assume that the image of F (_—:Ll(u) in
Ll(?f‘) is zero, i.e f(t) =0 TL/ a.e for f & F. Then
fCEf dp = j fcf? fdp =0 forall ¢, and j being injective
F & 1{‘/— for all V, whence F = 0.
Lemma 2 Let (Fi)iEI be a bounded Cauchy net in Ll(u) and
assume Fi —-—> 0 for the topology induced by Ll(’uu ) Then

F, —> 0 in 1Y(n).

Proof Let V be a closed neighborhood of zero in E. By hypothesis
there exists i, such that F, - Fj E:llv for i, j >1i, , that
is, if f; C—ZFi ; fﬁf* f.du - f‘i-(f fidu =V for all C.,U(,—'-_‘K(T) with
9l < 1. Now ( J q)fidu)iéz 1 1is a bounded Cauchy net in I,

~
hence converges to some limit Y (). But qu)fidu . JfCP ficu
tends to zero in F. Consequently Y (¢4) =0 and JF(Pfidu
tends to zero in E, thus V ©being closed we have, letting j go
to infinity, qu>fidu ©V for all i>1i  and i i <1, that is

F, EleV for all i > i, which proves the lemma.

1 - .o -
Lemma 3  Let T, Fc L (s) and assume (Fi)iEI is an increasingly
directed family such that 0 < F. < F . Then (Fi)iEZI is a

boundecd Cauchy net.,

Clearly Fi is bounded, for the topology as well as for the
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ordery; let fi E:Fi s il E:ED and assume (fi) is not a Cauchy net.

Then there exists an invariant metric d, and a number o > 0 and

a sequence (f, ) such that QE(Jf4 - £, 1) >a , and
kX XEN ‘ “k+1 R
f. (t) < £, (t) < £(t) wp.a.e. But then (f; ) converges by the
Ty = kg - , x'k

dominated convergence theorem which is a contradiction.
~J
Now let f be a n-measurable function, let K be a compact

set and let (Ki) be the family of compact subsets XK' of X
iET

such that f- .. is continuous. Since the union of two sets of this
JIAS
family belongs to the same family it is an increasingly directec.

- . 1
Let F, (resp. Fé) be the class of 71Ki (resp. }iK) in L (u).
By lemma 3 (Fi)'(_I is a Cauchy net in Ll(u), but since f 1is
l—
N =
n=measurable Fi tends to Fo and FO— Fi tends to zero, for the

nJ
topology induced by Ll(u). Thus by Lemma 2 F., tends to F, in
Ll(u), which proves that f is p-~measurable. Let A Dbe a
~)
n-negligible set, then A is ?Lmeasurable, hence wu-measurable and
- 51 . TP
for any compact Kgiy.Ar}K &t (w). By Lemma 1 AN K is p-negligible,

and K Dbeing arbitrary, A 1is p-negligible. This ends the proof.

6.2 Corollary. Let u : §C(T) ——=> E be a Radon measure with

values in a quasi-complete t.v.s. Let (ui)'C:I be a family of
l_

continuous linear maps u; ¢ E ——> E. which separates the points of

E. Put Ry = U OR . Then a function or set is p-measurable (resp.

n-negligible) 1iff it is ui—measurable (resp. o= negligible) for

all 1i.

?_ I } 1 - -
Proof Take F =i(¢:,LI E;, and j(x) (ui(A))iE:I . Then by Theorem

ss1 the hypothesis expresses that the function is'ﬁ—measurable

(resp. Bi-negligible).
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We now give an example to show that the conclusion of theorem
6.1 does not hold in the absence of some completeness hypothesis on E,
even if we assume _[f én @ E for all I‘EZQﬂl(u). Let E be the
space of all universally measurable and bounded functions on [0, 1]
with the topology c¢etermined by the semi-norms f —> jnéflduﬁ where
Y is an arbitrary positive measure on [0, 1]. Let ;LQE[O,I] —> I

be the canonical injection. Then by 4.1 ,ﬁ}(u) = i].f:l())) = E and

the map 1 > _ff du  is the identity map in 1. Let F be the
space of all functions with the topology of pointwise convergence.
Then by 4.1 Qil(:) =_v€leil())) = F where D is the set of discreet
measures. Hence an arbi%fary function is ﬁ—measurable but only
universally measurable functions are u-measurable. This is also an
example of a space Ll(u) which is not quasi-complete.

Although in general ﬁlintegrable functions are not u-integrable,
in many cases afﬂ—integrable function I will be un-integrable providec
the 'weal' integrals ]ﬂgf dﬁ belong to . When this is true for
discreet measures the following condition is satisfied:

(H) Every secuence (xn)n which is B-~summable in F and such

>1
- o0
that 2 Ny X & E for all (Ln) & ¢, is B-summable in E.

Conversely we have:

6.3 Theorem Let E be a quasi-complete t.v.s with E (S F, let
J

v : £ (T) —> E be a Radon measure and 'ﬁ = J 0 ue Assume that

(E, F) satisfies the condition (H). Then f‘E:lil(u) iff

Y
f & I?xlf) and L/‘gfdu'E:E for all bouncded Borel functions g.

Proof If f E:Jil(u) J[gfdﬁ = fgfdu & B. Conversely if
o

)
f G:}il(u), f is p-measurable by Theorem 6.1, and if (Kn) 1 is a
n
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sequence of disjoint compact sets such that f/k is continuous the
n

1\1’1
-~ ~ P i B -
sums X kn‘JKn f dn =_fg1du, where g = > ln}'ﬁ , belong to .

i
el

sequence (f; f du)n:q_= ( JKn f dﬁ)n>&. is B-summable in F anc the

Thus (H) dimplies that (J £ du
1 tn
ffE:Jf () by Theorem 4.3 5).

LJE; is B-summable in £, whence
In order to describe conditions which are sufficient for (H)
to hold we introduce the following terminology: We shall say that the

pair (E, F) possesses the automatic continuity property if:

(AC) Every linear map u from a Banach space to E such that Jjou

is continuous, 1is continuous. This holds in the following cases:

1) E is a complete metrisable t.v.s.

2) E 1is an (jf_F“) - Space.

3) E is a locally convex Suslin space.

L)Y E is locally convex and has a fundamental system of neighborhoods
of zero closed for the topology incduced by F.

5) Every subset of E which is bouncded in T is bounded in E.

6) There exists on E a stronger t.v.s. topology satisfying (AC).

Proof Let u: B-—>FE be a linear map from a Banach space B to
E such that jou is continuous. Then the graph of u 1s closed
and 1) 2) 3) imply (AC) by the closed graph theorem (l). Let

V be an absolutely convex neighborhood of zero in E which is

(1)
More generally (AC) holds whenever the closed graph theorem

holds for B and E. This is the case here:

For 1) see Dunford and Schwartz [4] II 2.4.

For 2) see Grothendieck [6] chapter IV Theorem Z.
For 3) see L. Schwartz [13].
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closed for the topology incduced by F, whence V =0 NV where V
is closed in F. Then u_l(V) = (jcau)—l (V) is absolutely convex,
absorbing and closed in B, i.e a barrel and B being a Baire
space it is a neighborhoocd of zero. 5) implies (AC) since u
is continuous if u is bounded. Finally if u 1is continuous with
respect to a stronger topology on E it is certainly continuous with
respect to the given topology.

It may be said that all pairs (E, F) that arise in practice
satisfy the condition (AC) (l).

We also use the following terminology: & 1is said to be

essentially separable in F when every countable subset of E 1is

contained in a separable subspace which is closed in L& for the

topology induced by F.

6.4 Theorem Assume (E, F) satisfies condition (AC) and that
E is a C-space or that E 1is locally convex and essentially

separable in F. Then (E, F) satisfies the condition (H).

(1) Tf wu is discontinuous there exists at least a continuous limaear
form x' on E (when I is locally convex) such that x'ou is
discontinuous. Such discontinuous linear forms do not arise
naturally in analysis. Here is an example where (AC) 1is not
satisfieds Let TF be a Banach space and let & be the space F
with the strongest locally convex topology. Then E 1s complete
(6] ch. L §1 but the identity F —> E is discontinuous.
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Proof Let (xn) be B-summable in F anc assume SX =22 X, © E.
Then by (AC) the map A —> SL from €°° to & is continuous,

in particular (xn) is a C-sequence in E. Thus if E 1is a
C-space (xn) is B-summable in [T. If on the other hand E is
locally convex and essentially separable in F, let El be a
separable subspace of T closed for the topology induced by F,
containing each X, and consequently SN = 2 My Ky o Then the

map A\ ——> SX from Cym)to El is weakly compact (1) , a fortiori

its restriction to c_  is weakly compact whence (x,) is

B-summable (see 3.3 and L.L). This proves the theorem.

(1)
See Grothendieck [5] p. 168 Corollary 1.
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Thus in particular we have the following:

6.5 Theorem Let E be a quasi-complete t.v.s. with E Cs F.
Let p ¢ *T(T) ——> & be a Radon measure and fi = Jowu . Kgsume
K satisfies one of the following conditions
a) E is a metrisable C-space.
b) E 1is a locally convex Suslin space (l).
c) E 1is a separable or weakly sequentially complete Ji}?'— space.
Then a function f is w-integrable iff it is’ﬁ—integrable and
Jéfd: & E for each bounded Borel function. In particular, assume
b) or <¢) is satisfied and let (xi)ie:I be a family of co?tinuous
linear forms on E separating the points of E. Put By = X5 Ol
Then £ & Lr(n) iff £ € XMp,) for each i and for every
bounded Borel function g there exists V (g) €& E such that
< Vg, x; > = fgf du, for all i,

The last assertion is an immediate consequence of the preceding
one by taking F = ¢l j(x) = ( < x, xi>>)i€ZI

Loosely speaking this means that f 1is p-integrable as soon as

one can make sense of the proposed integrals Jfgfdu as elements of H.

(1) For examples of Suslin spaces arising in analysis see L. Schwartz

[13].
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A typical space to which the above theorem does not apply is
the space L * (for instance if e, = (6'n,i)i i e (e,) is
B-summable for the topology o (€%, f’l) but not in the norm since
" en}ﬁ = 1). However if & = G'  is the dual of a Banach space ané
is equipped with the weak % topology, or even 7 (E, G), E is a
C-space and for any F such that E (G F the pair satifies AC

(by the 60

condition insuring AC), hence (E, F) satisfies (H).

In several cases the conditions Jfgfdﬁ - E can be relaxed some-
what: When E 1is a C-space and (AC) holds it suffices to have
JrCffdﬁ’EE for ¢ & KO(T) (since the Radon map g -—>fc?fd.:f - E
then has the global extension property). In many cases it suffices
to have _/; fdﬁEE for all Borel sets. This occurs when E 1is
locally pseudo-convex and the topology induced on E by F possesses
the Orlicz property (l), and notably in the following cases: &
and F are locally convex, E is a Frechet space and essentially
separable in F or weakly sequentially complete. The topology
induced on €'p(I) by GI(O<1r<*-mﬂ possesses the Orlicz property (2).
It has been proved by Ph.e Tuuspin (3) that the topology induced by
L°(v) on LP(Y) 0<p <+ possesses the Orlicz property. When
E and F are locally convex and [ possesses a fundamental system

of neighborhoods closed for the topology induced by F, and is

essentially separable in F or weakly Z-complete, it suffices to

(1) 5ee [14] Appendix II and [16] 8 O

(2) See [15] Theorem L.
(3)

Oral communication.
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have f f A% EE for every open set ) (l).
[4b]

As an example of a not necessarily locally convex case we

mention the following:s

Example Let wu =(ui)'f_1 be a Radon map with values in ﬁ’p(I)
U=
(0<p< + ™, i.e. a family of complex measures such that
P [u ()P <+ = for all P& K(T). Then £& Fl(w) iff
3 (=
£ & ;) for all i and & 1), £ousiP <+ e for all Borel
sets A, or 3 Lfcffﬂuilp <+ forall ¢ & G (7).
i€T
Next we describe cases where every 'ﬁ—integrable function is

actually p-integrable,

(1) see [14] 3.20 and TI.3.



7L

6.6 Theorem Let E be a cuasi-complete t.v.s with E (S T.
Assume a) that I is a C-space b) that every subset ofJ E which
is bounded in F 1is bounded in E. Then every'ﬁ—integrable

function is H-integrable. (i.e. ]ﬂl(u) and J_ (u ) coincide as

linear spaces, but not in general as topological spaces) .

Proof Let f & Zl(ﬁ). Then f 1is pw-measurable by 6.1. Let
(K, ) be a sequence of disjoint compact sets such that f/Kn is
contlnuous. Then the sequence (\J«nf du) = ( f&—f dp)n is a
C-sequence in F , thus the finite sums X }n,ﬁ f dg  with

Exni <1 are bounded in F, hence in E. Consequently

( [‘ iy du) is a C-sequence in E and therefore B-summable whence
- K n
n

f E:Jil(u) by Theorem h;3 5).

6.7 Corollary Let E be a locally convex quasi-complete C-space,

and let p Dbe an E-valued Radon measure. Then f is p=-integrable
§

iff £ is x'op - integrable for all x'& E . If E isa

Banach space it suffices to have I “ f;l li (x ouw) where H
H
1 (1)

is a closed norm determining subspace of L .

(1) This was alread roved in [14]. Recall that a locally convex
y P

space is a C-space if it is weakly 3-complete, in particular when

it is weakly sequentially complete.
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Remark  Let (ﬂ.,, P) ©be a probability space and consider the Radon
measure p : 4 ([R) ——> L2(ﬂ9 P) associated with Brownian
motion x(t,w) by p(9P) =f¢f(t)dx(t) (see example 3.8). Let
% be the corresponding measure with values in L°(J), P). Then we
still have Il(ﬁ,ﬁ) N Il(p,) even as a t.v.S. Indeed if

f & _I,l('gi) f is w-measurable, and if (Kn)n is a sequence of
disjoint compact subsets such that f/Kn is continuous the
sequence (_};{n f dp.) = (an by dﬁ) is a sequence of mutually
orthogonal and therefore independent Gaussian random variables,
summable in LO(,Q) and therefore in L2 , Wwhence

Lim fK fde=0 in L° and fE 21, Thus the map

Ll(u.) f—-~> L]‘( W) is bijective and since both spaces are complete

and metrisable it is an isomorphism. Hence Ll(f.l.) =Ll(?1.)) N L2( IR) -

Up to now it has been assumecd that © 1is a Radon measure
(in the preceding example £ ¥ 1is a C-space). However when (E, F)

satisfies condition (H) one may verify this as follows:

6.8 Theorem Let E be a quasi-complete t.7.s with E( F
and assume (E, F) satisfies condition (H). Let ps: £(T) —-> E
be a Radon map and /e‘ll = jop » Then u 1is a Radon measure iff

?1) is a Radon measure and jf dﬁ’ ~ E for every bounded lower

semi~continuous Baire function f with compact support.

This follows immediately from the next theorem applied to
the restrictions of p to JC((JJ) where (0 1is a relatively

compact open set.
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6.9 Theorem Let E be quasi-complete with E (S, F and assume
(E, F) satisfies condition (H). Let u : § (T) —> E be a

bounded Radon map and ﬁ = j o u. Then the following are equivalent:

1) Jtl(u) contains all bounded Borel functions.

2) For every bouncded lower semi-continuous Baire (1) function 1,
e YY) and ff dn € E.

3) For every < c X (T) with O <<, S C?n+l <1 u(CPn)

converges in F and 1lim u(CPn) &~ E.
n

Proof 1) =>3) => 2) => 1), and it suffices to prove the last
two implications.
~J
Observe first that 3) dimplies that 1 has the global
extension property: it suffices to verify condition 9) in Theorem
0o n

3.3, with ¢ >0, nz=l Cp(t) < 1. Let Y = 2 ., then

} i~ ©
by hypothesis u(qJn) converges in F idi.e X u(Cfi) converges,

~J 1=1
a fortiori u(CPi) tends to zero. Thus if f is a lower semi-

. ~J
continuous bounded Baire function f E:jil(u). We may assume

(l)We take the Baire sets to constitute the smallest o - algebra

containing the compact GS .
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f > 0. Then there exists a sequence «?Iprﬁ>l 0 S‘Fn < Qpep < if
f =sup ¢ , and d[f dn = l%m “(c?n)’ Now B& hypothesis this
limit belongs to E . Thus 3) implies 2). To show that 2)
implies 1) it suffices to prove that for ¢, >0 Zcfn(t) <1
u(CPn) tends to zero in E. Observe that 2) implies that /;

is a Radon measure (Theorem 3.1) and that 1 E:ji;(ﬁ). Let

g 20 (kn) & {*. Then = 'S u(Cfn) =3 xn'EYCpn) converges
in F by the dominated convergence theorem, and the sum is

‘ff dﬁ) where f(t) = N, Lfn(t). Thus = a u(q7n) & E and by
(H) (u(CFn)) is B-summable in E, a fortiori 1im u(C?n) =0

in E. This ends the proof.

Remark When E is a quasi-complete locally convex space and F
is I with the weak topology condition (H) is satisfied and the
above condition 3) 1is one of the weak compactness criteria due

(1)

to A. Grothendieck

(1) See A. Grothendieck [ 5] Theorem 6 p. 160.
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