Number Theory Seminar

Tuesday, March 19th, 2019
4:00 pm in Hume 321
Tsz Ho Chan
University of Memphis

On the congruence equation $\bar{a}+\bar{b} \equiv \bar{c} \quad(\bmod p)$

Abstract

In this talk, we will consider the congruence equation $\bar{a}+\bar{b} \equiv \bar{c}(\bmod p)$ with $1 \leq a, b, c \leq H$ where \bar{x} stands for the multiplicative inverse of x $(\bmod p)$. We prove that its number of solutions is asymptotic to H^{3} / p when $H>p^{2 / 3+o(1)}$ by estimating a certain average of Kloosterman sums via Gauss sums. On the other hand, when $H<p^{1 / 2} \sqrt{\log p}$, the number of solutions has order of magnitude $H \log H$. It would be interesting to understand better its transition of behavior. By transforming the question slightly, one can relate the problem to a certain first moment of Dirichlet L-functions at $s=1$. This is still work in progress.

