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ESSAYS ON THE ORLICZ-PETTIS
THEOREM, I (THE TWO THEOREMS)

To the memory of W. Orlicz

The purpose of this article that we plan to publish in a series of notes,
is a presentation of the results that concentrate around (what is now usually
called) “Orlicz-Pettis Theorem”, in their historical perspective.

This theorem is believed to be one of the great theorems of the classical
period of functional analysis. In 1979 a conference was held in Chapel Hill,
North Carolina, in memory of B. J. Pettis, and Kalton gave then a short survey
[1980] of the theorem. As he put it in his talk, the theorem “during the course
of its evolution has evolved almost beyond recognition, and the techniques
developed for its study have themselves helped to illuminate a number of
ideas in functional analysis”.

Our ambition here is to give not only the full history but also a thorough
discussion of the theorem. These are the reasons for doing so:

(1) The Orlicz-Pettis Theorem has been a source of misunderstandings
since its very beginning. Most of the authors who write about it do not
realize that in fact two theorems are dealt with and (for that reason or some
other), when they decide to give historical comments, these comments are
often inaccurate.

(2) We believe that the evolution of the Orlicz-Pettis Theorem is worth
detailed presentation. As well, we try to compile an exhaustive list of papers
directly concerned with the subject matter of this article.

(3) Last but not least, the whole subject is not a closed chapter in
mathematics. Some of the essays to follow will not only survey the existing
material, but will bring improvements into the area.
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In short, our undertaking is on a different scale than the above mentioned
talk by Kalton.

We dedicate this article to the memory of W LADYS LAW ORLICZ who
died on August 9, 1990 in Poznań, Poland, at the age of 87. He was the last
survivor of the Banach School of Functional Analysis that flourished in Lwów
between the two world wars.

1 THE ORIGINAL RESULT

There must exist (as always) a prehistory for the subject since the notion of un-
conditional convergence of series in Banach spaces must have been motivated
by some earlier considerations in concrete function spaces. There is a footnote
to this effect in Orlicz’s paper. We leave any investigation of such matters
to true historians and take as our starting point the following definition and
theorem (Orlicz [1929], §2, Satz 2; see also [1988]).

Definition 1.1. Let X be a Banach space. A formal series
∑∞

n=1 xn of ele-
ments of X is said to be unconditionally convergent (“unbedingt konvergent”)
if for every permutation π of N, the series

∑∞
n=1 xπ(n) is convergent.

Theorem 1.2. Let X be a weakly sequentially complete Banach space. A
series

∑
xn is unconditionally convergent in X if (and only if) for each con-

tinuous linear functional x∗ ∈ X∗

∑
|x∗(xn)|

is convergent.

REMARK. Equivalently, the theorem says that if
∑

xn is weakly uncon-
ditionally Cauchy in X (i.e. given a weak neighborhood V of 0 in X, there
exists k ∈ N such that for each finite subset e of {k + 1, k + 2. . . . }, we have∑

n∈e xn ∈ V ), then it is (norm) unconditionally convergent. Of course, Orlicz
knew that for scalar series unconditional convergence and absolute convergence
are equivalent.

Here is the original proof of the theorem. The proof is translated from
the German with modern ingredients introduced but without changing any
essential point of the argument.

Proof. It will be sufficient to prove the following lemma.
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Lemma. If a sequence (un) in X is such that

|un‖ ≤ 1, n = 1, 2, . . . and (1.1)

∑

n

|x∗(un)| is convergent for each x∗ ∈ X∗, (1.2)

then limn→∞ ‖un‖ = 0.

Suppose for a moment that the lemma has been shown. If our series were
not unconditionally convergent, there would exist a sequence (vi),

vi = xπ(ni) + . . . xπ(mi)

such that
‖vi‖ ≥ ε0 > 0. (1.3)

Setting ui = vi/‖vi‖, the condition (1.2) would still be satisfied with ‖ui‖ = 1,
which contradicts the lemma.

The proof of the lemma. Let E be the closed linear span of (un). Since the weak
topology of E is induced from the weak topology of X (Orlicz knew the Hahn-
Banach Theorem: Banach published his version of it in the same first issue of
Studia Mathematica), it can be assumed that X = E and, consequently, that
X is separable. We now show that:

For each ε > 0 there exists N ∈ N such that for each x∗ ∈ B∗ (the unit
ball of X∗)

∞∑

n=N

|x∗(un)| ≤ ε. (1.4)

If not, there would exist ε0 > 0, Ni → ∞, and a sequence (X∗
i ) in B∗ such

that

∞∑

n=Ni

|x∗
i (un)| ≥ ε0. (1.5)

Since X is separable, B∗ is compact and metrizable in the weak* topol-
ogy and so we can assume, by passing to a subsequence, that (x∗

i ) is weak*
convergent in B∗.
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Let (ai) be a bounded sequence (i.e., (ai) = a ∈ `∞). For each x∗ ∈ X∗

∞∑

n=1

anx∗(un) = lim
k→∞

x∗

(
k∑

n=1

anun

)

= x∗(u) (1.6)

(here the weak sequential completeness of X is used; the weak limit

u = lim
k→∞

k∑

n=1

anun

could otherwise fail to be in X).
Since (x∗

i ) is weak* convergent, one can treat the linear transformation

∞∑

n=1

anx∗
1(un) = x∗

1(u)

...
∞∑

n=1

anx∗
p(un) = x∗

p(u)

...

with the matrix {x∗
p(uq)} as a coercive summability method (“lineare kon-

vergezerzeugende Limitierungsmethode”), which to every bounded sequence
(an) asociates the limit (i.e., i→∞x∗

i (u)). By a theorem of Schur ([1921], Satz
3), the matrix {x∗

p(uq)} must have the following property:
For each ε > 0 there exists N ∈ N such that for each p = 1, 2, . . .

∞∑

n=N

|x∗
p(un)| ≤ ε. (1.7)

This contradicts (1.5). Then (1.4) holds, which implies the lemma.

2 THE ORLICZ-PETTIS THEOREM

According to Orlicz [1955] and [1971], it was an analysis of the above proof
of Theorem 1.2 that motivated the introduction of the notion of subseries
convergence. By assuming in Theorem 1.2 the weak subseries convergence
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instead of the weak unconditional Cauchy condition, essentially the same proof
gives another theorem. The new theorem was presented during a meeting of
the Scientific Associations of Students of Mathematics and Physics, Lwów
1931 (Orlicz [1955], footnote 21 and 52; [1988]), and is recorded in Banach’s
“Théorie des opérations linéaires” in the last section of “Remarques”. We
stress that the theorem is there openly credited to Orlicz, although no proofs
were given for the results discussed in the “Remarques”.

Theorem 2.1 ([1932], p. 240). In a Banach space X the following are equiv-
alent.

1. The series
∑

xn is unconditionally convergent.

2. The series
∑

xn is subseries convergent.

3. The series
∑

xn is weakly subseries convergent.

Here the subseries convergence of
∑

xn means that for each subsequence
(xni) of (xn) the series

∑
xni is convergent. As Orlicz says [1971], the theorem

was never published separately with a proof since the old proof worked fine.
Let us examine the last statement more closely. When one analyses the

original proof of Theorem 1.2, one can notice immediately that the proof can
actually be simplified. Instead of formulating the lemma, it is sufficient to
proceed by contradiction only once and show that ((1.3) above)

‖vi‖ ≥ ε0 > 0

cannot happen. For this purpose, the proof of the lemma as given above can
be repeated (with un = vn) assuming presently that

∑
vn is weakly subseries

convergent. The theorem of Schur must now be used with its full force (see
Schur [1921], Remark after the proof on p. 90), that is, taking into account that
(1.5) works already when a = (an) is such that an = +1,−1, or 0 (instead of
a ∈ `∞ used previously). Then the analogue of (1.5) still holds in view of the
weak subseries convergence of

∑
xn (and so, X need no longer be assumed to

1(translated from Polish) Unconditionally convergent series in Banach spaces appeared
first in Orlicz [1928]. The equivalent notion of subseries convergent series was introduced by
the author in a Communication during a meeting of the Scientific Associations of Students
of Mathematica and Physics in Lwów in 1931; compare also Banach [1932], p. 240.

2Theorem 3B was first published in the author’s paper [1929]; part A of the theorem
was contained in the author’s Communication during a meeting etc. (compare footnote 2).
S. Banach gave the main theorems of the Communication without proof in his monograph
[1932], p. 240.
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be weakly sequentially complete). The theorem of Schur (in its strong form)
shows that (1.3) holds. i.e., that

∞∑

n=N

‖xn‖ ≤ ε

and this ends the proof of Theorem 2.1.
It is thus beyond any doubt for us (and we believe, for any mathematician

reading these words) that indeed “the old proof worked fine” once the assump-
tion of weak subseries convergence replaced the weak unconditional Cauchy
condition in the original Theorem 1.2.

Let us also add that there is a similar remark in Bessaga and Pe lczyński
([1958], footnote 10).

3 THE PETTIS’ CONTRIBUTION

Let us start by comparing the two theorems. As already noticed by Orlicz in
[1929] (example after Satz 3), his Theorem 1.2 does not hold in every Banach
space. The most familiar example nowadays is provided by

∑
en in c0 (where

en = (0, 0. . . . 0.1, 0, 0, . . . ) with the “1” in the n-th position). It is clear that∑
en is weakly unconditionally Cauchy but not convergent therein.
On the other hand, if X is weakly sequentially complete, weakly uncondi-

tionally Cauchy series coincide with weakly subseries convergent ones. Thus,
not only does Theorem 1.2 imply Theorem 2.1 but also vice versa.

The difference between the two theorems becomes striking when they are
properly formulated in the language of vector measures. First, we observe that
Theorem 1.2 is equivalent with (Orlicz [1929] Satz 3):

Theorem 1.3. Let X be a weakly sequentially complete Banach space and
assume that

∑
xn is perfectly bounded in X (i.e., the set {

∑
n∈e xn: e∈ F(N)}

of all unordered finite partial sums is a bounded set in X). Then
∑

xn is
convergent in X.

Its vector measure formulation is as follows.

Theorem 1.3’. Let X be a weakly sequentially complete Banach space, R a
ring of sets, and μ : R → X an additive set function. Then μ is bounded if
and only if it is exhaustive.

We recall that μ is said to be bounded if its range μ(R) is a bounded set in
X, and is said to be exhaustive if for each disjoint sequence (Ei) of sets in R,

lim
i→∞

‖μ(Ei)‖ = 0.
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An equivalent formulation of 1.3’, even closer to Theorem 1.2, would be that
weak exhaustivity of μ implies its exhaustivity.

On the other hand, the vector measure form of Theorem 2.1 is:

Theorem 2.1’. Let X be a Banach space, R a σ-ring of sets, and μ : R → X
a weakly countably additive set function. Then μ is (norm) countably additive.

Pettis, writing [1938], knew Orlicz’s [1929] paper, and he knew Theorem
2.1 from Banach’s book. However, he did not realize that the original proof
of Theorem1.2 works for Theorem 2.1. He writes (Pettis [1938], p. 231):

“The next lemma and theorem were proved by Orlicz ([1929]. Theorem 2)
for the case X weakly sequentially complete; the general theorem is credited
by Banach ([1932], p. 240) to the same author without proof or reference.
Since we know no published proof to which to refer, and since the lemma is
fundamental for our purposes, we include the following demonstration.”

Orlicz Lemma (Pettis [1938], Lemma 2.31). If
∑

xn is weakly subseries
convergent in a Banach space X, then given ε > 0 there exists Nε such that
x∗ ∈ X∗ and ‖x∗‖ = 1 implies

∞∑

n=Nε

|x∗(xn)| < ε;

hence ‖xn‖ → 0.

Theorem (Pettis [1938], Theorem 2.32). In a Banach space X weak and norm
subseries convergence are equivalent.

The derivation of the Theorem from the Orlicz Lemma is standard; it is
clear that Orlicz Lemma corresponds to (1.7) in our version of Orlicz’s proof
of Theorem 1.2. What was its proof by Pettis? Here is the surprise (or is it?):

The proof is nothing more than a polished Banach

space version of the original proof of Orlicz.

Let us explain. In the language of Banach space theory, an interpretation
of the theorem of Schur that was invoked by Orlicz is that the weak and
norm convergence of sequences are the same in `1 (today it is called the Schur
property of `1). Banach ([1932], pp. 138–139) gives a direct proof of the latter
result (referring to Schur on p. 239) and, as one can guess, the proof in Banach’s
book also makes it clear that, to get the result, instead of all the dual `∞ of
`1 one can use the sequences that take values +1, 0,−1 only (compare with
Schur’s remark in [1921] referred to in §2). Pettis, using the proof of Banach
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(he refers to the proof and not to the statement of the “Schur property”),
gives an elegant derivation of the “Orlicz Lemma” that is entirely in the spirit
of the modified proof of Orlicz.

4 FINALE

For further reference, we will give the schematic name The First Orlicz The-
orem to Theorem 1.2 and its equivalent form in Theorem 1.3.

When looking back at The First Orlicz Theorem and knowing the subse-
quent research that has been motivated by this result, the statement under
1.3 appears to be more important than 1.2; the Revisited Theorem (1.3) goes
more visibly into the ‘heart of the matter’ in the sense that its formulation
requires only the linear topological notion of boundedness, and thus is suit-
able for further generalizations. On the other hand, the statement of The
First Orlicz Theorem (1.2), though rather accidental in the sense that its form
is made possible by the ‘accidental’ existence of the separating dual (=weak
topology) on the space, has the merit of provoking the ‘right’ statement in the
form of The Second Orlicz Theorem (Theorem 2.1) or, as it is called today,
The Orlicz-Pettis Theorem.

CONCLUSION. We can now pinpoint the source of misunderstandings
concerning the history of The Orlicz-Pettis Theorem, as follows.

Orlicz proved in [1929] a general theorem (The First Orlicz Theorem),
which happens to be equivalent in weakly sequentially complete Banach spaces
to another statement that, in turn, in the new form generalizes to arbitrary
Banach spaces (The second Orlicz Theorem or The Orlicz-Pettis Theorem).

Perhaps Pettis was being overly cautious in his remarks concerning The
First Orlicz Theorem, or perhaps he was unaware of the essential general-
ity of Orlicz’s proof. In any case, there is a natural tendency to interpret
Pettis’ comment quoted above as saying that Orlicz proved in [1929] exactly
(as opposed to in particular ) “The Orlicz-Pettis Theorem in weakly sequen-
tially complete Banach spaces”; cf. e.g., McArthur [1967] (and many other
authors following him) who had fallen into this trap. Had Pettis added the
innocent ‘in particular’ in a proper place, the misunderstandings in question,
most probably, would have been avoided.

Let us add nevertheless that although The Orlicz-Pettis Theorem was
stated and proved in full generality by Orlicz himself, we do feel that the
name “Orlicz-Pettis Theorem” is not only convenient, but there is a genuine
reason to keep it the way it is: today the Orlicz-Pettis Theorem appears most
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often as a theorem about vector measures (2.1’), and Pettis was the first to
state it in this form.

We finish by mentioning a natural problem connected with this early stage
of our discussion of The First Orlicz Theorem and The Orlicz-Pettis Theo-
rem. The answer to this problem, although contained in Bessaga-Pe lczyński
([1958], C.1̇4), seems to remain largely ignored by the general public. In or-
der to clear the air before stating the problem, let us recall a few facts about
the interdependence between the subseries convergence and the unconditional
convergence.

In a Hausdorff Abelian topological group X, the subseries convergence of∑
xn implies its unconditional convergence. To see this, it suffices to con-

sider
∑

xn in the completion X̂ of X and apply the Cauchy condition for
summability.

If X is sequentially complete, the unconditional convergence of
∑

xn im-
plies its subseries convergence, but there is no reason to expect this implication
to remain valid without any completeness condition on X. An easy confirma-
tion of that feeling (communicated to us by Z. Lipecki) can be obtained this
way:

Let(X, ‖∙‖) be an F-space and let (xn) be an arbitrary sequence of inde-
pendent vectors in X such that xn → 0. Choose a subsequence (yk) of (xn)
such that

∑
‖yk‖ < ∞. Then

∑
yk is subseries convergent. Let Y be the

ℵ0-dimensional subspace of X generated by the vectors {
∑∞

k=1 yk, y1, y2, . . . }.
Then

∑
yk is unconditionally convergent in Y . However, it cannot be subseries

convergent in Y in view of Corollary 1 in Labuda-Lipecki [1982].
Now let X be again a Banach space. It could still be possible, perhaps,

that the weak unconditional convergence of
∑

xn in X would imply its norm
(whence subseries) convergence. Of course, this implication is valid in an X in
which The First Orlicz Theorem holds. Such Banach spaces are characterized
by Pe lczyński [1957] (see Bessaga-Pe lczyński [1958], Theorem5, for the first
published proof) as those which do not contain c0.

Here is an example in c0 which disproves the above guess: Consider again
the standard basis (en), and set xn := en − en+1. Then

∑
xn is not norm

convergent in c0, but for every permutation π of N, one has
∑

xπ(n) = e1

holds with respect to the weak topology.
Thus, the class of Banach spaces in which weak unconditional convergence

implies unconditional convergence is included in the class of Banach spaces
which do not contain c0, and is therefore equal to the class of Banach spaces
in which the weak unconditional Cauchy condition is sufficient to guarantee
unconditional convergence. The result remains true in sequentially complete
locally convex spaces.
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[1958] On bases and unconditional convergence of series in Banach spaces,
Studia Math. 17, pp. 151–164

N. J. Kalton
[1980] The Orlicz-Pettis Theorem, Proceedings of the conference on integra-
tion, topology, and geometry in linear spaces. Contemporary Mathematics 2,
Providence, Rhode Island, pp. 91–100

I. Labuda, Z. Lipecki
[1982] On subseries convergent series and m-quasi-bases in topological linear
spaces, Manuscripta Math. 38, pp. 87–98

C. W. McArthur
[1967] On a theorem of Orlicz and Pettis, Pacific J. Math. 22, pp. 297–302

W. Orlicz
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[1921] Über lineare Transformationen in der Theorie der unendlichen Reihen,
J. Reine Angew. Math. 151, pp. 79–111

Received October 19, 1990


