Combinatorics Seminar

Friday Oct 16th, 2015 2:30 PM-3:20 PM in Hume 331

Fractional matchings of graphs

Dr. Suil O Simon Fraser University

ABSTRACT

A fractional matching of a graph G is a function $\phi : E(G) \to [0,1]$ such that for each vertex $v, \sum_{e \in \Gamma(v)} \phi(e) \leq 1$, where $\Gamma(v)$ is the set of edges incident to v. The fractional matching number of G, written $\alpha'_f(G)$, is the maximum of $\sum_{e \in E(G)} \phi(e)$ over all fractional matchings ϕ . In this talk, we talk about some lower bounds for $\alpha'_f(G)$ in terms of $|V(G)|, |E(G)|, \delta(G)$, and $\Delta(G)$.

By viewing every matching as a fractional matching, we have $\alpha'(G) \leq \alpha'_f(G)$ for every graph G, where $\alpha'(G)$ is the maximum size of a matching in G, but equality need not hold. We also talk about how large the difference (ratio) between $\alpha'_f(G)$ and $\alpha'(G)$ in a (connected) graph can be.

In 2005, Gregory and Haemers had given a relationship between $\lambda_3(G)$ and the existence of a perfect matching in a *d*-regular graph with even number of vertices, where $\lambda_3(G)$ is the third largest eigenvalue of an adjacency matrix of *G*. After that, some research between $\lambda_3(G)$ and $\alpha'(G)$ in a *d*-regular *G* was investigated. In addition to the above two results, we give a relationship between $\lambda_1(G)$ and $\alpha'_f(G)$, where $\lambda_1(G)$ is the largest eigenvalue of an adjacency matrix of *G*. (This is a partly joint work with Behrend, Choi, Kim, and West.)