Combinatorics Seminar

Wednesday March 18th, 2015
3:50 PM-4:50 PM in Hume 201

Subtending many angles with few points

Dr. Paul Balister
University of Memphis

ABSTRACT Suppose that $d \geq 2$ and n are fixed, and that $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ are n specified angles. How many points do we need to place in \mathbb{R}^{d} to realize all of these angles by triples of these points? A simple degrees of freedom argument shows that m points in \mathbb{R}^{2} cannot realize more than $2 m-4$ general angles. We give a construction to show that this bound is sharp when $m \geq 5$.

In d dimensions the degrees of freedom argument gives an upper bound of $d m-\binom{d+1}{2}-1$ general angles. However, the above result does not generalize to this case; surprisingly, the bound of $2 m-4$ from two dimensions cannot be improved at all: there are sets of $2 m-3$ of angles that cannot be realized by m points in any dimension.

Joint work with Béla Bollobás, Zoltán Füredi, Imre Leader, and Mark Walters.

