Combinatorics Seminar

Wednesday March 4th, 2015
3:50 pm-4:50 pm in Hume 201

Moore Graphs of Diameter two: The Hoffman-Singleton Problem

William Staton
University of Mississippi

Abstract

A k-regular graph G of diameter not exceeding two is easily seen to have at most $n=1+k^{2}$ vertices. If G has exactly $1+k^{2}$ vertices, it is said to be a Moore Graph. K_{1}, K_{2}, C_{5} and the Petersen Graph are Moore Graphs with $k=0,1,2,3$.

Homan and Singleton displayed, in 1960, a Moore Graph with $k=7$ and they proved that if there is another it must be with $k=57$. Their lovely proof uses eigenvalues of the adjacency matrix.

I will show the Homan-Singleton proof and then discuss observations by Siemion Fajtlowicz and Bing Wei which may prove useful in constructing the putative Moore graph with $k=57$ and $n=3250$:

