Combinatorics Seminar

Wednesday, April 4, 2012

3:00 pm in Hume 331

Dr. Emlee Nicholson

Department of Mathematics Millsaps College

Degree sum condition for k-ordered hamiltonian connected graphs

ABSTRACT

Let G be a graph on n vertices. If for any ordered set of vertices $S = \{v_1, v_2, \ldots, v_k\}$, that is, the vertices in S appear in order of the sequence v_1, v_2, \ldots, v_k , there exists a $v_1 - v_k$ (hamiltonian) path containing S in the given order, then G is k-ordered (hamiltonian) connected. Let $\{u_1, u_2\}$ and $\{u_3, u_4\}$ be any distinct pairs of nonadjacent vertices. We define $\sigma'_4 = \min\{d_G(u_1) + d_G(u_2) + d_G(u_3) + d_G(u_4)\}$ when $G \neq K_n$ and $G \neq K_n - e$, otherwise set $\sigma'_4(G) = \infty$. In this talk we will present some new sufficient conditions on the k-ordered connectivity based on σ'_4 . The main result is as follows: If $\sigma'_4(G) \geq 2n + 3k - 10$ $(k \geq 4)$, then G is k-ordered hamiltonian connected. Our outcomes generalize several related results known before.