Combinatorics Seminar

Wednesday, April 13, 2011
3:00 pm in Hume 331

Linked Graph with Modular Constraints

Dr. Zhiquan Hu
Faculty of Mathematics and Statistics
Central China Normal University, Wuhan 430079, China

Abstract

A graph G is k-linked if G has at least $2 k$ vertices, and for every sequence $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{k}$ of distinct vertices, G contains k vertex-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ such that P_{i} joins x_{i} and y_{i} for $i=1,2, \ldots, k$. Moreover, the above defined k-linked graph G is k-linked modulo $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ if, in addition, for any k-tuple $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ of natural numbers, the paths $P_{1}, P_{2}, \ldots, P_{k}$ can be chosen such that P_{i} has length d_{i} modulo m_{i} for $i=$ $1,2, \ldots, k$. Thomassen showed that there exists a function $f\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ such that every $f\left(m_{1}, m_{2}, \ldots, m_{k}\right)$-connected graph is k-linked modulo $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ provided all m_{i} are odd. For even moduli, he showed in another article that there exists a natural number $g(2,2, \cdots, 2)$ such that every $g(2,2, \cdots, 2)$-connected graph is k-linked modulo $(2,2, \cdots, 2)$ if deleting any $4 k-3$ vertices leaves a non-bipartite graph.

In this talk, we show linear upper bounds for $f\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ and $g\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ in terms of $m_{1}, m_{2}, \ldots, m_{k}$, respectively. Our results generalize several known results on k-parity-linked graphs. This is a joint work with Guantao Chen, Yuan Chen and Shuhong Gao.

