Abstract: Consider the sequence \(\{p_n(z)\}_{n=0}^{\infty} \) of polynomials of a complex variable \(z \) (\(p_n(z) \) of degree \(n \) and positive leading coefficient) that are orthonormal over the unit disk \(\mathbb{D} := \{z : |z| < 1\} \) with respect to a weight of the form \(|h(z)|^2 \), \(h(z) \) a polynomial without zeros in \(\mathbb{D} \), that is, satisfying
\[
\int_{\mathbb{D}} p_n(z) \overline{p_m(z)} |h(z)|^2 dx dy = \delta_{n,m}.
\]
We establish the behavior of \(p_n(z) \) as \(n \to \infty \) at every point of the complex plane. We shall also discuss the behavior that these formulas impose on the zeros of the polynomials \(p_n \). A comparison with similar, known results for polynomials orthogonal over the unit circle will be made, and future research problems/extensions will be discussed.

Students are welcome.