ANALYSIS SEMINAR

$\label{eq:Geometry of L1} \textbf{Geometry of } L^1(\mu)$ for vector valued measure μ

Part III

Iwo Labuda

Department of Mathematics, University of Mississippi

THURSDAY, OCTOBER 8, 2009 AT 9:30 AM IN HUME 321

Abstract: Abstract. Let μ be a measure from a σ -algebra of subsets of a set T into a sequentially complete Hausdorff topological vector space X. Assume that the convex hull of the range of μ is bounded in X and denote by $L^1(\mu)$ the space of scalar valued functions on T which are integrable with respect to the vector measure μ . Sometimes a property of X is inherited by $L^1(\mu)$. I will show that the bounded multiplier property passes from X to $L^1(\mu)$. Answering a 1972 question of Erik Thomas, I will show that for a large class of F-spaces X the non containment of c_0 passes onto $L^1(\mu)$.

Students are welcome. An attempt will be made at explaining the notions and the theory of integration with respect to a vector measure.