ON STRUCTURE OF UPPER SEMICONTINUITY

Iwo Labuda

Let Y be a topological space, \mathcal{A}, \mathcal{B} families of its subsets. We write $\mathcal{B} \# \mathcal{A}$ and say that \mathcal{B} and \mathcal{A} mesh, if $A \cap B \neq \emptyset$ for each $A \in \mathcal{A}$ and each $B \in \mathcal{B}$. \mathcal{B} is compactoid relative to A, if each filter meshing with \mathcal{B} has a cluster point in A.

Let X be another topological space and let $F: X \rightrightarrows Y$ be a set-valued map. F is said to be upper semicontinuous at $x \in X$ (usc at $x)$, if, for each open set V containing $F(x)$, there exists a neighborhood U of x such that $F(U) \subset V . F$ is upper semicontinuous (usc) if it is upper semicontinuous at x for each $x \in X$.

We write $\mathcal{B} \rightsquigarrow A$ and say that \mathcal{B} aims at A, if, for each neighborhood V of A there exists B in \mathcal{B} such that $B \subset V$. Let $\mathcal{U}=\mathcal{U}(x)$ be the filter of neighborhoods of x. The family $\{F(U): U \in \mathcal{U}\}$ is obviously a base of a filter on Y. F is usc at x if and only if $F(\mathcal{U}) \rightsquigarrow F(x)$.

A set A contained in Y is called a cap (of upper semicontinuity) of F at x_{0} if the map defined by setting $F\left(x_{0}\right)=A$ and keeping other values of F intact, is usc at x_{0}.

The external part or map (of F at x_{0}) is the map $E():.=F(.) \backslash F\left(x_{0}\right)$. Hence $E(\mathcal{U})$ denotes the image filter base of $\mathcal{U}=\mathcal{U}\left(x_{0}\right)$ by the external map, that is, $\left\{F(U) \backslash F\left(x_{0}\right): U \in \mathcal{U}\left(x_{0}\right)\right\}$. We call it external filter base (of F at x_{0}).

Let $\mathcal{U}(x)$ be the filter of neighborhoods of $x \in X$. Active boundary of F at x_{0} is the adherence of $E(\mathcal{U})$, that is,

$$
\operatorname{Frac} F\left(x_{0}\right)=\operatorname{adh} E(\mathcal{U})=\bigcap_{U \in \mathcal{U}\left(x_{0}\right)} \overline{\{F(U) \backslash F(x)\}}
$$

The name Frac $F\left(x_{0}\right)$ originates from French 'frontière active'. The notion was introduced by Dolecki in order to prove that, if X, Y are metric spaces and F is usc at x_{0}, then its active boundary is a compact cap (for F at x_{0}). The theorems of this type are sometimes called Choquet-Dolecki theorems. They are equivalent with the fact that the corresponding external filter base is compactoid.

The compactoidness of $E(\mathcal{U})$ seems to be the ultimate strengthening of upper semicontinuity. We will show that it takes place under considerably weaker assumptions about spaces X and Y than previously thought.

