ON STRUCTURE OF UPPER SEMICONTINUITY

Iwo Labuda

Let Y be a topological space, \mathcal{A} , \mathcal{B} families of its subsets. We write $\mathcal{B}#\mathcal{A}$ and say that \mathcal{B} and \mathcal{A} mesh, if $A \cap B \neq \emptyset$ for each $A \in \mathcal{A}$ and each $B \in \mathcal{B}$. \mathcal{B} is compactoid relative to A, if each filter meshing with \mathcal{B} has a cluster point in A.

Let X be another topological space and let $F : X \Rightarrow Y$ be a set-valued map. F is said to be *upper semicontinuous at* $x \in X$ (*usc at* x), if, for each open set V containing F(x), there exists a neighborhood U of x such that $F(U) \subset V$. F is *upper semicontinuous* (usc) if it is upper semicontinuous at x for each $x \in X$.

We write $\mathcal{B} \rightsquigarrow A$ and say that \mathcal{B} aims at A, if, for each neighborhood V of A there exists B in \mathcal{B} such that $B \subset V$. Let $\mathcal{U} = \mathcal{U}(x)$ be the filter of neighborhoods of x. The family $\{F(U) : U \in \mathcal{U}\}$ is obviously a base of a filter on Y. F is use at x if and only if $F(\mathcal{U}) \rightsquigarrow F(x)$.

A set A contained in Y is called a cap (of upper semicontinuity) of F at x_0 if the map defined by setting $F(x_0) = A$ and keeping other values of F intact, is use at x_0 .

The external part or map (of F at x_0) is the map $E(.) := F(.) \setminus F(x_0)$. Hence $E(\mathcal{U})$ denotes the image filter base of $\mathcal{U} = \mathcal{U}(x_0)$ by the external map, that is, $\{F(U) \setminus F(x_0) : U \in \mathcal{U}(x_0)\}$. We call it external filter base (of F at x_0).

Let $\mathcal{U}(x)$ be the filter of neighborhoods of $x \in X$. Active boundary of F at x_0 is the adherence of $E(\mathcal{U})$, that is,

Frac
$$F(x_0) = adh E(\mathcal{U}) = \bigcap_{U \in \mathcal{U}(x_0)} \overline{\{F(U) \setminus F(x)\}},$$

The name Frac $F(x_0)$ originates from French 'frontière active'. The notion was introduced by Dolecki in order to prove that, if X, Y are metric spaces and F is use at x_0 , then its active boundary is a *compact cap* (for F at x_0). The theorems of this type are sometimes called *Choquet-Dolecki theorems*. They are equivalent with the fact that the corresponding *external filter base is compactoid*.

The compactoidness of $E(\mathcal{U})$ seems to be the ultimate strengthening of upper semicontinuity. We will show that it takes place under considerably weaker assumptions about spaces X and Y than previously thought.

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$