Interview Talk

NONCOMMUTATIVE SYMMETRIC SPACES

OF MEASURABLE OPERATORS

M. M. Czerwińska

Department of Mathematical Sciences, University of Memphis

THURSDAY DECEMBER 2, 2010 AT 2:00 PM IN HUME 331

Abstract: Let \mathcal{M} be a semifnite von Neumann algebra with a faithful, normal, semifnite trace τ , and E be a symmetric Banach function space on $[0; \tau(1))$. The symmetric space $E(\mathcal{M}; \tau)$ of τ -measurable operators consists of all τ -measurable operators x for which the singular value function $\mu(x)$ belongs to E and is equipped with the norm $||x||_{E(\mathcal{M},\tau)} = ||x||_E$. Special cases of noncommutative symmetric spaces are the following well known spaces: $L_p(\mathcal{M}; \tau)$ -noncommutative L_p -spaces; unitary matrix spaces C_E ; Schatten spaces C_p , in particular trace class C_1 and the class of Hilbert-Schmidt operators C_2 . The noncommutative spaces have been investigated by several mathe- maticians as J. Arazy, P. Dodds, B. De Pagter, G. Pisier, Y. Raynaud, F. Sukochev, and Q. Xu. We will discuss some geometric properties of $E(\mathcal{M}; \tau)$, like complex uniform rotundity, smoothness, and Fréchet smoothness. Below there are examples of our results.

Theorem 0.1. Let E be a symmetric space on $[0; \alpha), \alpha = \tau(1)$ and \mathcal{M} be a semifnite von Neumann algebra with a faithful, normal, σ -fnite trace τ . An operator x is a complex extreme point of $B_{E(\mathcal{M},\tau)}$ if and only if $\mu(x)$ is a complex extreme point of B_E and one of the following, not mutually exclusive, conditions holds: (i) $\mu_{\infty}(x) = 0$

(ii) $n(x)\mathcal{M}n(x^{\star}) = 0$ and $|x| \ge \mu_{\infty}(x)s(x)$.

Theorem 0.2. Let \mathcal{M} be a semifnite von Neumann algebra with a normal, faithful, semifnite trace τ . The symmetric function space E on $[0; \tau(\mathbf{1}))$ is complex uniformly rotund if and only if $E(\mathcal{M}; \tau)$ is complex uniformly rotund.